北京市海淀区第二十中学2023年九年级数学第一学期期末达标检测模拟试题含解析_第1页
北京市海淀区第二十中学2023年九年级数学第一学期期末达标检测模拟试题含解析_第2页
北京市海淀区第二十中学2023年九年级数学第一学期期末达标检测模拟试题含解析_第3页
北京市海淀区第二十中学2023年九年级数学第一学期期末达标检测模拟试题含解析_第4页
北京市海淀区第二十中学2023年九年级数学第一学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩16页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

北京市海淀区第二十中学2023年九年级数学第一学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每小题3分,共30分)1.如图,点M在某反比例函数的图象上,且点M的横坐标为,若点和在该反比例函数的图象上,则与的大小关系为()A. B. C. D.无法确定2.△DEF和△ABC是位似图形,点O是位似中心,点D,E,F分别是OA,OB,OC的中点,若△DEF的面积是2,则△ABC的面积是(

)A.2 B.4 C.6 D.83.如图,在四边形ABCD中,BD平分∠ABC,∠BAD=∠BDC=90°,E为BC的中点,AE与BD相交于点F,若BC=4,∠CBD=30°,则AE的长为()A. B. C. D.4.如图,点P是菱形ABCD的对角线AC上的一个动点,过点P垂直于AC的直线交菱形ABCD的边于M、N两点.设AC=2,BD=1,AP=x,△AMN的面积为y,则y关于x的函数图象大致形状是()A. B. C. D.5.将抛物线y=x2平移得到抛物线y=(x+2)2,则这个平移过程正确的是()A.向左平移2个单位B.向右平移2个单位C.向上平移2个单位D.向下平移2个单位6.二次函数(b>0)与反比例函数在同一坐标系中的图象可能是()A. B. C. D.7.若函数y=的图象在其象限内y的值随x的增大而增大,则m的取值范围是()A.m>2 B.m<2 C.m>-2 D.m<-28.在反比例函数y=的图象上有两点A(x1,y1)、B(x2,y2).若x1<0<x2,y1<y2则k的取值范围是()A.k≥ B.k> C.k<﹣ D.k<9.在一个不透明的盒子中装有a个除颜色外完全相同的球,这a个球中只有4个红球.若每次将球充分搅匀后,任意摸出1个球记下颜色再放回盒子.通过大量重复试验后,发现摸到红球的频率稳定在20%左右,则a的值大约为()A.16 B.20 C.24 D.2810.在同一坐标系中,反比例函数y=与二次函数y=kx2+k(k≠0)的图象可能为()A. B.C. D.二、填空题(每小题3分,共24分)11.把多项式分解因式的结果是.12.如图,正方形OABC与正方形ODEF是位似图,点O为位似中心,位似比为2:3,点A的坐标为(0,2),则点E的坐标是____.13.将抛物线向左平移个单位,得到新的解析式为________.14.在△ABC中,∠C=90°,cosA=,则tanA等于.15.如图,中,边上的高长为.作的中位线,交于点;作的中位线,交于点;……顺次这样做下去,得到点,则________.

16.如图,AD与BC相交于点O,如果,那么当的值是_____时,AB∥CD.17.如图,AB是⊙O的直径,BC与⊙O相切于点B,AC交⊙O于点D,若∠ACB=50°,则∠BOD=______度.18.如图,圆锥的轴截面(过圆锥顶点和底面圆心的截面)是边长为4cm的等边三角形ABC,点D是母线AC的中点,一只蚂蚁从点B出发沿圆锥的表面爬行到点D处,则这只蚂蚁爬行的最短距离是_______cm.三、解答题(共66分)19.(10分)为响应市政府“创建国家森林城市”的号召,某小区计划购进A,B两种树苗共17棵,已知A种树苗每棵80元,B种树苗每棵60元。设购进A种树苗x棵,购买两种树苗的总费用为w元。(1)写出w(元)关于x(棵)的函数关系式;(2)若购买B种树苗的数量少于A种树苗的数量,请你给出一种费用最省的方案,并求出该方案所需费用。20.(6分)如图,在四边形中,,.已知A(-2,0)、B(6,0)、D(0,3)反比例函数的图象经过点.(1)求点的坐标和反比例函数的解析式;(2)将四边形沿轴向上平移个单位长度得到四边形,问点是否落在(1)中的反比例函数的图象上?21.(6分)为缓解交通压力,市郊某地正在修建地铁站,拟同步修建地下停车库.如图是停车库坡道入口的设计图,其中MN是水平线,MN∥AD,AD⊥DE,CF⊥AB,垂足分别为D,F,坡道AB的坡度=1:3,AD=9米,点C在DE上,CD=0.5米,CD是限高标志牌的高度(标志牌上写有:限高米).如果进入该车库车辆的高度不能超过线段CF的长,则该停车库限高多少米?(结果精确到0.1米,参考数据:≈1.41,≈1.73,≈3.16)22.(8分)如图,已知反比例函数y=的图象经过点A(4,m),AB⊥x轴,且△AOB的面积为2.(1)求k和m的值;(2)若点C(x,y)也在反比例函数y=的图象上,当-3≤x≤-1时,求函数值y的取值范围.23.(8分)(特例感知)(1)如图①,∠ABC是⊙O的圆周角,BC为直径,BD平分∠ABC交⊙O于点D,CD=3,BD=4,则点D到直线AB的距离为.(类比迁移)(2)如图②,∠ABC是⊙O的圆周角,BC为⊙O的弦,BD平分∠ABC交⊙O于点D,过点D作DE⊥BC,垂足为E,探索线段AB、BE、BC之间的数量关系,并说明理由.(问题解决)(3)如图③,四边形ABCD为⊙O的内接四边形,∠ABC=90°,BD平分∠ABC,BD=7,AB=6,则△ABC的内心与外心之间的距离为.24.(8分)计算:25.(10分)如图,在△ABC中,AB=AC,以AB为直径的⊙O交BC于点D,过点D作EF⊥AC于点E,交AB的延长线于点F.(1)判断直线DE与⊙O的位置关系,并说明理由;(2)如果AB=5,BC=6,求DE的长.26.(10分)如图,在平面直角坐标系中,已知抛物线经过原点,顶点为,且与直线相交于两点.(1)求抛物线的解析式;(2)求、两点的坐标;(3)若点为轴上的一个动点,过点作轴与抛物线交于点,则是否存在以为顶点的三角形与相似?若存在,请直接写出点的坐标;若不存在,请说明理由.

参考答案一、选择题(每小题3分,共30分)1、A【分析】反比例函数在第一象限的一支y随x的增大而减小,只需判断a与2a的大小便可得出答案.【详解】∵a<2a又∵反比例函数在第一象限的一支y随x的增大而减小∴故选:A.【点睛】本题考查比较大小,需要用到反比例函数y与x的增减变化,本题直接读图即可得出.2、D【解析】先根据三角形中位线的性质得到DE=AB,从而得到相似比,再利用位似的性质得到△DEF∽△ABC,然后根据相似三角形的面积比是相似比的平方求解即可.【详解】∵点D,E分别是OA,OB的中点,∴DE=AB,∵△DEF和△ABC是位似图形,点O是位似中心,∴△DEF∽△ABC,∴=,∴△ABC的面积=2×4=8故选D.【点睛】本题考查了位似变换:如果两个图形不仅是相似图形,而且对应顶点的连线相交于一点,对应边互相平行,那么这样的两个图形叫做位似图形,这个点叫做位似中心.3、D【分析】如图,作EH⊥AB于H,利用∠CBD的余弦可求出BD的长,利用∠ABD的余弦可求出AB的长,利用∠EBH的正弦和余弦可求出BH、HE的长,即可求出AH的长,利用勾股定理求出AE的长即可.【详解】如图,作EH⊥AB于H,在Rt△BDC中,BC=4,∠CBD=30°,∴BD=BC·cos30°=2,∵BD平分∠ABC,∠CBD=30°,∴∠ABD=30°,∠EBH=60°,在Rt△ABD中,∠ABD=30°,BD=2,∴AB=BD·cos30°=3,∵点E为BC中点,∴BE=EC=2,在Rt△BEH中,BH=BE·cos∠EBH=1,HE=EH·sin∠EBH=,∴AH=AB-BH=2,在Rt△AEH中,AE==,故选:D.【点睛】本题考查解直角三角形的应用,正确作出辅助线构建直角三角形并熟记三角函数的定义是解题关键.4、C【解析】△AMN的面积=AP×MN,通过题干已知条件,用x分别表示出AP、MN,根据所得的函数,利用其图象,可分两种情况解答:(1)0<x≤1;(2)1<x<2;解:(1)当0<x≤1时,如图,在菱形ABCD中,AC=2,BD=1,AO=1,且AC⊥BD;∵MN⊥AC,∴MN∥BD;∴△AMN∽△ABD,∴=,即,=,MN=x;∴y=AP×MN=x2(0<x≤1),∵>0,∴函数图象开口向上;(2)当1<x<2,如图,同理证得,△CDB∽△CNM,=,即=,MN=2-x;∴y=AP×MN=x×(2-x),y=-x2+x;∵-<0,∴函数图象开口向下;综上答案C的图象大致符合.故选C.本题考查了二次函数的图象,考查了学生从图象中读取信息的数形结合能力,体现了分类讨论的思想.5、A【解析】试题分析:根据抛物线的平移规律即可得答案,故答案选A.考点:抛物线的平移规律.6、B【解析】试题分析:先根据各选项中反比例函数图象的位置确定a的范围,再根据a的范围对抛物线的大致位置进行判断,从而对各选项作出判断:∵当反比例函数经过第二、四象限时,a<0,∴抛物线(b>0)中a<0,b>0,∴抛物线开口向下.所以A选项错误.∵当反比例函数经过第一、三象限时,a>0,∴抛物线(b>0)中a>0,b>0,∴抛物线开口向上,抛物线与y轴的交点在x轴上方.所以B选项正确,C,D选项错误.故选B.考点:1.二次函数和反比例函数的图象与系数的关系;2.数形结合思想的应用.7、B【分析】先根据反比例函数的性质列出关于m的不等式,求出m的取值范围即可.【详解】∵函数y=的图象在其象限内y的值随x值的增大而增大,∴m−1<0,解得m<1.

故选:B.【点睛】本题考查的是反比例函数的性质,熟知反比例函数y=(k≠0)中,当k<0时,双曲线的两支分别位于第二、第四象限,在每一象限内y随x的增大而增大是解答此题的关键.8、D【分析】利用反比例函数的性质得到反比例函数图象分布在第一、三象限,于是得到1﹣3k>0,然后解不等式即可.【详解】∵x1<0<x2,y1<y2,∴反比例函数图象分布在第一、三象限,∴1﹣3k>0,∴k<.故选:D.【点睛】此题考查反比例函数的性质,根据点的横纵坐标的关系即可确定函数图象所在的象限,由此得到k的取值范围.9、B【分析】在同样条件下,大量反复试验时,随机事件发生的频率逐渐稳定在概率附近,可以从比例关系入手,列出方程求解.【详解】根据题意知=20%,解得a=20,经检验:a=20是原分式方程的解,故选B.【点睛】本题考查利用频率估计概率.大量反复试验下频率稳定值即概率.关键是根据红球的频率得到相应的等量关系.10、D【解析】根据k>0,k<0,结合两个函数的图象及其性质分类讨论.【详解】分两种情况讨论:①当k<0时,反比例函数y=,在二、四象限,而二次函数y=kx2+k开口向上下与y轴交点在原点下方,D符合;②当k>0时,反比例函数y=,在一、三象限,而二次函数y=kx2+k开口向上,与y轴交点在原点上方,都不符.分析可得:它们在同一直角坐标系中的图象大致是D.故选D.【点睛】本题主要考查二次函数、反比例函数的图象特点.二、填空题(每小题3分,共24分)11、m(4m+n)(4m﹣n).【解析】试题分析:原式==m(4m+n)(4m﹣n).故答案为m(4m+n)(4m﹣n).考点:提公因式法与公式法的综合运用.12、(3,3)【分析】根据位似图形的比求出OD的长即可解题.【详解】解:∵正方形OABC与正方形ODEF是位似图,位似比为2:3,∴OA:OD=2:3,∵点A的坐标为(0,2),即OA=2,∴OD=3,DE=EF=3,故点E的坐标是(3,3).【点睛】本题考查了位似图形,属于简单题,根据位似图形的性质求出对应边长是解题关键.13、【分析】先求出平移后的抛物线的顶点坐标,再利用顶点式抛物线解析式写出即可.【详解】抛物线的顶点坐标为(﹣1,﹣3),向左平移2个单位后的抛物线的顶点坐标为(﹣3,﹣3),所以,平移后的抛物线的解析式为.故答案为:.【点睛】本题考查了二次函数图象与几何变换,要求熟练掌握平移的规律:左加右减,上加下减.并用根据规律利用点的变化确定函数解析式.14、.【解析】试题分析:∵在△ABC中,∠C=90°,cosA=,∴.∴可设.∴根据勾股定理可得.∴.考点:1.锐角三角函数定义;2.勾股定理.15、或【分析】根据中位线的性质,得出的关系式,代入即可.【详解】根据中位线的性质故我们可得当均成立,故关系式正确∴故答案为:或.【点睛】本题考查了归纳总结的问题,掌握中位线的性质得出的关系式是解题的关键.16、【分析】如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边,据此可得结论.【详解】,当时,,.故答案为.【点睛】本题主要考查了平行线分线段成比例定理,解题时注意:如果一条直线截三角形的两边(或两边的延长线)所得的对应线段成比例,那么这条直线平行于三角形的第三边.17、80【分析】根据切线的性质得到∠ABC=90°,根据直角三角形的性质求出∠A,根据圆周角定理计算即可.【详解】解:∵BC是⊙O的切线,

∴∠ABC=90°,

∴∠A=90°-∠ACB=40°,

由圆周角定理得,∠BOD=2∠A=80°.【点睛】本题考查的是切线的性质、圆周角定理,掌握圆的切线垂直于经过切点的半径是解题的关键.18、25【详解】解:∵圆锥的底面周长是4π,则4π=nπ×4180∴n=180°即圆锥侧面展开图的圆心角是180°,∴在圆锥侧面展开图中AD=2,AB=4,∠BAD=90°,∴在圆锥侧面展开图中BD=20=2∴这只蚂蚁爬行的最短距离是25cm.故答案为:25.三、解答题(共66分)19、(1)w=20x+1020;(2)费用最省方案为:购进A种树苗9棵,B种树苗8棵,所需费用为1200元.【分析】(1)根据题意可得等量关系:费用W=A种树苗a棵的费用+B种树苗(17−a)棵的费用可得函数关系式;(2)根据一次函数的性质与不等式的性质得到当x=9时,w有最小值.【详解】解:(1)w=80x+60(17-x)=20x+1020(2)∵k=20>0,w随着x的增大而增大又∵17-x<x,解得x>8.5,∴8.5<x<17,且x为整数∴当x=9时,w有最小值20×9+1020=1200(元)答:费用最省方案为:购进A种树苗9棵,B种树苗8棵,所需费用为1200元.【点睛】此题主要考查了一次函数和一元一次方程的应用,关键是正确理解题意,找出题目中的等量关系与不等关系,列出函数关系式进行求解.20、(1);(1)点恰好落在双曲线上【分析】(1)过C作CE⊥AB,由题意得到四边形ABCD为等腰梯形,进而得到三角形AOD与三角形BEC全等,得到CE=OD=3,OA=BE=1,可求出OE的长,确定出C坐标,代入反比例解析式求出k的值即可;(1)由平移规律确定出B′的坐标,代入反比例解析式检验即可.【详解】解:(1)过C作CE⊥AB.∵DC∥AB,AD=BC,∴四边形ABCD为等腰梯形,∴∠A=∠B,DO=CE=3,CD=OE,∴△ADO≌△BCE,∴BE=OA=1.∵B(6,0)∴OB=6∴OE=OB﹣BE=6﹣1=4,∴C(4,3),把C(4,3)代入反比例函数解析式得:k=11,则反比例解析式为y;(1)由平移得:平移后B的坐标为(6,1),把x=6代入反比例得:y=1,则平移后点落在该双曲线上.【点睛】本题考查了待定系数法求反比例解析式,反比例函数图象上点的坐标特征,以及坐标与图形变化,熟练掌握待定系数法是解答本题的关键.21、2.1.【分析】据题意得出tanB=,即可得出tanA,在Rt△ADE中,根据勾股定理可求得DE,即可得出∠FCE的正切值,再在Rt△CEF中,设EF=x,即可求出x,从而得出CF=1x的长.【详解】解:据题意得tanB=,∵MN∥AD,∴∠A=∠B,∴tanA=,∵DE⊥AD,∴在Rt△ADE中,tanA=,∵AD=9,∴DE=1,又∵DC=0.5,∴CE=2.5,∵CF⊥AB,∴∠FCE+∠CEF=90°,∵DE⊥AD,∴∠A+∠CEF=90°,∴∠A=∠FCE,∴tan∠FCE=在Rt△CEF中,CE2=EF2+CF2设EF=x,CF=1x(x>0),CE=2.5,代入得()2=x2+(1x)2解得x=(如果前面没有“设x>0”,则此处应“x=±,舍负”),∴CF=1x=≈2.1,∴该停车库限高2.1米.【点睛】点评:本题考查了解直角三角形的应用,坡面坡角问题和勾股定理,解题的关键是坡度等于坡角的正切值.22、(1)k=4,m=1;(2)当-3≤x≤-1时,y的取值范围为-4≤y≤-.【详解】试题分析:(1)根据反比例函数系数k的几何意义先得到k的值,然后把点A的坐标代入反比例函数解析式,可求出k的值;(2)先分别求出x=﹣3和﹣1时y的值,再根据反比例函数的性质求解.试题解析:(1)∵△AOB的面积为2,∴k=4,∴反比例函数解析式为,∵A(4,m),∴m==1;(2)∵当x=﹣3时,y=﹣;当x=﹣1时,y=﹣4,又∵反比例函数在x<0时,y随x的增大而减小,∴当﹣3≤x≤﹣1时,y的取值范围为﹣4≤y≤﹣.考点:反比例函数系数k的几何意义;反比例函数图象上点的坐标特征.23、(1)(2)AB+BC=2BE(3)【分析】(1)由AB是直径可得∠BDC=90°,根据勾股定理可得BC=5过点D分别作DE⊥BC于点E,DF⊥BA于点F由BD平分∠ABC可得DE=DF=,DF即为所求,(2)过点D分别作DE⊥BC于点E,DF⊥BA于点F由∠ABC+∠ADC=180°,∠ABC+∠EDF=180°可得∠ADF=∠CDE进而可证△ADF≌△CDE(ASA)∴AF=CE∴BF-AB=BC-BE易证BF=BE∴BE-AB=BC-BE,即AB+BC=2BE(3)如图易得四边形BEDF为正方形,BD是对角线,可得正方形边长为7由(2)可得BC=2BE-AB=8,由勾股定理可得AC=10作△ABC内切圆,M为圆心,N为切点,由切线长定理可得,所以ON=5-4=1由面积法易得内切圆半径为2【详解】解:(1)由AB是直径可得∠BDC=90°,根据勾股定理可得BC=5过点D分别作DE⊥BC于点E,DF⊥BA于点F由BD平分∠ABC可得DE=DF=,DF即为所求(2)过点D分别作DE⊥BC于点E,DF⊥BA于点F由∠ABC+∠ADC=180°,∠ABC+∠EDF=180°可得∠ADF=∠CDE进而可证△ADF≌△CDE(ASA)∴AF=CE∴BF-AB=BC-BE易证BF=BE∴BE-AB=BC-BE,即AB+BC=2BE(3)如图易得四边形BEDF为正方形,BD是对角线,可得正方形边长为7由(2)可得BC=2BE-AB=8,由勾股定理可得AC=10作△ABC内切圆,M为圆心,N为切点,由切线长定理可得,所以ON=5-4=1由面积法易得内切圆半径为2∴,故答案:(1)(2)AB+BC=2BE(3)【点睛】本题主要考查角平分线、三角形全等及三角形内心与外心的综合,难度较大,需灵活运用各知识求解.24、1【分析】先计算特殊的三角函数值和去绝对值,再从左至右计算即可.【详解】解:原式=

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论