![安徽省芜湖市名校2023年数学九上期末复习检测试题含解析_第1页](http://file4.renrendoc.com/view10/M02/33/31/wKhkGWW9qGKAYKjnAAIOkfxCvYk002.jpg)
![安徽省芜湖市名校2023年数学九上期末复习检测试题含解析_第2页](http://file4.renrendoc.com/view10/M02/33/31/wKhkGWW9qGKAYKjnAAIOkfxCvYk0022.jpg)
![安徽省芜湖市名校2023年数学九上期末复习检测试题含解析_第3页](http://file4.renrendoc.com/view10/M02/33/31/wKhkGWW9qGKAYKjnAAIOkfxCvYk0023.jpg)
![安徽省芜湖市名校2023年数学九上期末复习检测试题含解析_第4页](http://file4.renrendoc.com/view10/M02/33/31/wKhkGWW9qGKAYKjnAAIOkfxCvYk0024.jpg)
![安徽省芜湖市名校2023年数学九上期末复习检测试题含解析_第5页](http://file4.renrendoc.com/view10/M02/33/31/wKhkGWW9qGKAYKjnAAIOkfxCvYk0025.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省芜湖市名校2023年数学九上期末复习检测试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题(每小题3分,共30分)1.方程的根是()A.5和 B.2和 C.8和 D.3和2.如图,是由一些相同的小正方形围成的立方体图形的三视图,则构成这种几何体的小正方形的个数是()A.4 B.6 C.9 D.123.某市计划争取“全面改薄”专项资金120000000元,用于改造农村义务教育薄弱学校100所数据120000000用科学记数法表示为()A.12×108 B.1.2×108 C.1.2×109 D.0.12×1094.在圆内接四边形中,与的比为,则的度数为()A. B. C. D.5.如图所示的抛物线是二次函数y=ax2+bx+c(a≠0)的图象,则下列结论:①abc>0;②b+2a=0;③抛物线与x轴的另一个交点为(4,0);④a+c>b,其中正确的结论有()A.1个 B.2个 C.3个 D.4个6.2018年是江华县脱贫攻坚摘帽决胜年,11月25号市检查组来我县随机抽查了50户贫困户,其中还有1户还没有达到脱贫的标准,请聪明的你估计我县3000户贫困户能达到脱贫标准的大约有()户A.60 B.600 C.2940 D.24007.如图,在△ABC中,BC=4,以点A为圆心,2为半径的⊙A与BC相切于点D,交AB于点E,交AC于点F.P是⊙A上一点,且∠EPF=40°,则图中阴影部分的面积是()A.4- B.4- C.8- D.8-8.对于函数,下列说法错误的是()A.这个函数的图象位于第一、第三象限B.这个函数的图象既是轴对称图形又是中心对称图形C.当x>0时,y随x的增大而增大D.当x<0时,y随x的增大而减小9.的相反数是()A. B.2 C. D.10.已知关于的一元二次方程有两个相等的实数根,则()A.4 B.2 C.1 D.﹣4二、填空题(每小题3分,共24分)11.二次函数y=x2+bx+c的图象上有两点(3,4)和(﹣5,4),则此抛物线的对称轴是直线x=________12.已知扇形的圆心角为120°,弧长为4π,则扇形的面积是___.13.年月日我国自主研发的大型飞机成功首飞,如图给出了一种机翼的示意图,其中,,则的长为_______.14.若分式的值为0,则x的值为_______.15.抛物线y=x2+2x与y轴的交点坐标是_____.16.小亮在投篮训练中,对多次投篮的数据进行记录.得到如下频数表:投篮次数20406080120160200投中次数1533496397128160投中的频率0.750.830.820.790.810.80.8估计小亮投一次篮,投中的概率是______.17.一组正方形按如图所示的方式放置,其中顶点在轴上,顶点,,,,,,在轴上,已知正方形的边长为,,则正方形的边长为__________________.18.如图,已知A(5,0),B(4,4),以OA、AB为边作▱OABC,若一个反比例函数的图象经过C点,则这个函数的解析式为_____.三、解答题(共66分)19.(10分)“万州古红桔”原名“万县红桔”,古称丹桔(以下简称为红桔),种植距今至少已有一千多年的历史,“玫瑰香橙”(源自意大利西西里岛塔罗科血橙,以下简称香橙)现已是万州柑橘发展的主推品种之一.某水果店老板在2017年11月份用15200元购进了400千克红桔和600千克香橙,已知香橙的每千克进价比红桔的每千克进价2倍还多4元.(1)求11月份这两种水果的进价分别为每千克多少元?(2)时下正值柑橘销售旺季,水果店老板决定在12月份继续购进这两种水果,但进入12月份,由于柑橘的大量上市,红桔和香橙的进价都有大幅下滑,红桔每千克的进价在11月份的基础上下降了%,香橙每千克的进价在11月份的基础上下降了%,由于红桔和“玫瑰香橙”都深受库区人民欢迎,实际水果店老板在12月份购进的红桔数量比11月份增加了%,香橙购进的数量比11月份增加了2%,结果12月份所购进的这两种柑橘的总价与11月份所购进的这两种柑橘的总价相同,求的值.20.(6分)已知关于的方程(1)当m取何值时,方程有两个实数根;(2)为m选取一个合适的整数,使方程有两个不相等的实数根,并求出这两个实数根.21.(6分)有一只拉杆式旅行箱(图1),其侧面示意图如图2所示,已知箱体长AB=50cm,拉杆BC的伸长距离最大时可达35cm,点A,B,C在同一条直线上,在箱体底端装有圆形的滚筒轮⊙A,⊙A与水平地面相切于点D,在拉杆伸长到最大的情况下,当点B距离水平地面34cm时,点C到水平地面的距离CE为55cm.设AF∥MN.(1)求⊙A的半径.(2)当人的手自然下垂拉旅行箱时,人感到较为舒服,某人将手自然下垂在C端拉旅行箱时,CE为76cm,∠CAF=64°,求此时拉杆BC的伸长距离(结果精确到1cm,参考数据:sin64°≈0.9,cos64°≈0.39,tan64°≈2.1).22.(8分)如图,是半圆的直径,是半圆上的点,且于点,连接,若.求半圆的半径长;求的长.23.(8分)如图①,已知抛物线y=ax2+bx+c的图像经过点A(0,3)、B(1,0),其对称轴为直线l:x=2,过点A作AC∥x轴交抛物线于点C,∠AOB的平分线交线段AC于点E,点P是抛物线上的一个动点,设其横坐标为m.(1)求抛物线的解析式;(2)若动点P在直线OE下方的抛物线上,连结PE、PO,当m为何值时,四边形AOPE面积最大,并求出其最大值;(3)如图②,F是抛物线的对称轴l上的一点,在抛物线上是否存在点P使△POF成为以点P为直角顶点的等腰直角三角形?若存在,直接写出所有符合条件的点P的坐标;若不存在,请说明理由.24.(8分)如图,在中,,是外接圆,点是圆上一点,点,分别在两侧,且,连接,延长到点,使.(1)求证:为的切线;(2)若的半径为1,当是直角三角形时,求的面积.25.(10分)某运动品牌对第一季度A、B两款运动鞋的销售情况进行统计,两款运动鞋的销售量及总销售额如图所示:(1)一月份B款运动鞋的销售量是A款的80%,则一月份B款运动鞋销售了多少双?(2)第一季度这两款运动鞋的销售单价保持不变,求三月份的总销售额(销售额=销售单价×销售量)(3)结合第一季度的销售情况,请你对这两款运动鞋的进货、销售等方面提出一条建议.26.(10分)如图,AB为⊙O直径,点D为AB下方⊙O上一点,点C为弧ABD中点,连接CD,CA.(1)若∠ABD=α,求∠BDC(用α表示);(2)过点C作CE⊥AB于H,交AD于E,∠CAD=β,求∠ACE(用β表示);(3)在(2)的条件下,若OH=5,AD=24,求线段DE的长.
参考答案一、选择题(每小题3分,共30分)1、C【分析】利用直接开平方法解方程即可得答案.【详解】(x-3)2=25,∴x-3=±5,∴x=8或x=-2,故选:C.【点睛】本题考查解一元二次方程,解一元二次方程的常用方法有:直接开平方法、配方法、公式法、因式分解法等,熟练掌握并灵活运用适当的方法是解题关键.2、D【分析】根据三视图,得出立体图形,从而得出小正方形的个数.【详解】根据三视图,可得立体图形如下,我们用俯视图添加数字的形式表示,数字表示该图形俯视图下有几个小正方形则共有:1+1+1+2+2+2+1+1+1=12故选:D【点睛】本题考查三视图,解题关键是在脑海中构建出立体图形,建议可以如本题,通过在俯视图上标数字的形式表示立体图形帮助分析.3、B【解析】科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数.确定n的值时,要看把原数变成a时,小数点移动了多少位,n的绝对值与小数点移动的位数相同.当原数绝对值>10时,n是正数;当原数的绝对值<1时,n是负数.【详解】120000000=1.2×108,故选:B.【点睛】此题考查了科学记数法的表示方法.科学记数法的表示形式为a×10n的形式,其中1≤|a|<10,n为整数,表示时关键要正确确定a的值以及n的值.4、C【分析】根据圆内接四边形对角互补的性质即可求得.【详解】∵在圆内接四边形ABCD中,:=3:2,∴∠B:∠D=3:2,∵∠B+∠D=180°,∴∠B=180°×=.故选C.【点睛】本题考查了圆内接四边形的性质,熟练掌握圆内接四边形的性质是解题的关键.5、C【解析】试题分析:∵抛物线开口向上,∴a>0,∵抛物线的对称轴为直线x==1,∴b=﹣2a<0,所以②正确;∵抛物线与y轴的交点在x轴下方,∴c<0,∴abc>0,所以①正确;∵点(﹣2,0)关于直线x=1的对称点的坐标为(4,0),∴抛物线与x轴的另一个交点坐标为(4,0),所以③正确;∵x=﹣1时,y<0,即a﹣b+c<0,∴a+c<b,所以④错误.故选C.考点:抛物线与x轴的交点;二次函数图象与系数的关系.6、C【分析】由题意根据用总户数乘以能达到脱贫标准所占的百分比即可得出答案.【详解】解:根据题意得:(户),答:估计我县3000户贫困户能达到脱贫标准的大约有2940户.故选:C.【点睛】本题考查的是通过样本去估计总体,注意掌握总体平均数约等于样本平均数是解题的关键.7、B【解析】试题解析:连接AD,
∵BC是切线,点D是切点,
∴AD⊥BC,
∴∠EAF=2∠EPF=80°,
∴S扇形AEF=,
S△ABC=AD•BC=×2×4=4,
∴S阴影部分=S△ABC-S扇形AEF=4-π.8、C【解析】试题分析:根据反比例函数的图像与性质,可由题意知k=4>0,其图像在一三象限,且在每个象限y随x增大而减小,它的图像即是轴对称图形又是中心对称图形.故选C点睛:反比例函数的图像与性质:1、当k>0时,图像在一、三象限,在每个象限内,y随x增大而减小;2、当k<0时,图像在二、四象限,在每个象限内,y随x增大而增大.3、反比例函数的图像即是轴对称图形又是中心对称图形.9、B【分析】根据相反数的性质可得结果.【详解】因为-2+2=0,所以﹣2的相反数是2,故选B.【点睛】本题考查求相反数,熟记相反数的性质是解题的关键.10、A【分析】根据方程有两个相等的实数根结合根的判别式即可得出关于的一元一次方程,解方程即可得出结论.【详解】解:∵方程有两个相等的实数根,∴,解得:.故选A.【点睛】本题考查了根的判别式以及解一元一次方程,由方程有两个相等的实数根结合根的判别式得出关于的一元一次方程是解题的关键.二、填空题(每小题3分,共24分)11、-1【解析】根据两已知点的坐标特征得到它们是抛物线的对称点,而这两个点关于直线x=-1对称,由此可得到抛物线的对称轴.【详解】∵点(3,4)和(-5,4)的纵坐标相同,∴点(3,4)和(-5,4)是抛物线的对称点,而这两个点关于直线x=-1对称,∴抛物线的对称轴为直线x=-1.故答案为-1.【点睛】本题考查了二次函数的性质:二次函数y=ax2+bx+c(a≠0)的顶点坐标是(-,),对称轴直线x=-.12、12π.【分析】利用弧长公式即可求扇形的半径,进而利用扇形的面积公式即可求得扇形的面积.【详解】设扇形的半径为r.则=4π,解得r=6,∴扇形的面积==12π,故答案为12π.【点睛】本题考查了扇形面积求法,用到的知识点为:扇形的弧长公式l=,扇形的面积公式S=,解题的关键是熟记这两个公式.13、【分析】延长交于点,设于点,通过解直角三角形可求出、的长度,再利用即可求出结论.【详解】延长交于点,设于点,如图所示,在中,,,.在中,,,,,,,,故答案为:.【点睛】本题考查了解直角三角形的应用.通过解直角三角形求出、的长度是解题的关键.14、-1【分析】根据分式的值为零的条件可以求出x的值.【详解】解:根据题意得:,解得:x=-1.
故答案为:-1.【点睛】若分式的值为零,需同时具备两个条件:(1)分子为2;(2)分母不为2.这两个条件缺一不可.15、(0,0)【解析】令x=0求出y的值,然后写出即可.【详解】令x=0,则y=0,所以,抛物线与y轴的交点坐标为(0,0).故答案为(0,0).【点睛】本题考查了二次函数图象上点的坐标特征,熟练掌握抛物线与坐标轴的交点的求解方法是解题的关键.16、0.1【分析】由小亮每次投篮的投中的频率继而可估计出这名球员投一次篮投中的概率.【详解】解:∵0.75≈0.1,0.13≈0.1,0.12≈0.1,0.79≈0.1,…,∴可以看出小亮投中的频率大都稳定在0.1左右,∴估计小亮投一次篮投中的概率是0.1,故答案为:0.1.【点睛】本题比较容易,考查了利用频率估计概率.大量反复试验下频率值即概率.概率=所求情况数与总情况数之比.17、【分析】由正方形的边长为,,,得D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,根据三角函数的定义和正方形的性质,即可得到答案.【详解】∵正方形的边长为,,,∴D1E1=B2E2,D2E3=B3E4,∠D1C1E1=∠C2B2E2=∠C3B3E4=30°,∴D1E1=C1D1=,B2C2==,同理可得:B3C3=,以此类推:正方形的边长为:,∴正方形的边长为:.故答案是:.【点睛】本题主要考查正方形的性质和三角函数的定义综合,掌握用三角函数的定义解直角三角形,是解题的关键.18、y=﹣【分析】直接利用平行四边形的性质得出C点坐标,再利用反比例函数解析式的求法得出答案.【详解】解:∵A(5,0),B(4,4),以OA、AB为边作▱OABC,∴BC=AO=5,BE=4,EO=4,∴EC=1,故C(﹣1,4),若一个反比例函数的图象经过C点,则这个函数的解析式为:y=﹣.故答案为:y=﹣.【点睛】本题主要考查的是平行四边形的性质和反比例函数解析式的求法,将反比例函数上的点带入解析式中即可求解.三、解答题(共66分)19、(1)11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)m的值为49.1.【解析】(1)设11月份红桔的进价为每千克x元,香橙的进价为每千克y元,依题意有,解得,答:11月份红桔的进价为每千克8元,香橙的进价为每千克20元;(2)依题意有:8(1﹣m%)×400(1+m%)+20(1﹣m%)×100(1+2m%)=15200,解得m1=0(舍去),m2=49.1,故m的值为49.1.20、(1)m≥—;(2)x1=0,x2=2.【分析】(1)方程有两个实数根,必须满足△=b2−4ac≥0,从而建立关于m的不等式,求出实数m的取值范围.(2)答案不唯一,方程有两个不相等的实数根,即△>0,可以解得m>−,在m>−的范围内选取一个合适的整数求解就可以.【详解】解:(1)△=[-2(m+1)]²-4×1×m²=8m+4∵方程有两个实数根∴△≥0,即8m+4≥0解得,m≥-(2)选取一个整数0,则原方程为,x²-2x=0解得x1=0,x2=2.【点睛】此题主要考查了根的判别式,以及解一元二次方程,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.21、(1)4;(2)BC=30cm【分析】(1)作BK⊥AF于点H,交MN于点K,通过△ABH∽△ACG,根据相似三角形的性质可得关于x的方程,求解即可;(2)在Rt△ACG中利用正弦值解线段AC长,即可得.【详解】(1)解:作BK⊥AF于点H,交MN于点K,则BH∥CG,△ABH∽△ACG,设圆形滚轮的半径AD长为xcm,∴即解得,x=4∴⊙A的半径是4cm.(2)在Rt△ACG中,CG=76-4=72cm,则sin∠CAF=∴AC=cm,∴BC=AC-AB=80-50=30cm.【点睛】本题考查相似三角形的判定与性质,锐角三角函数,构建相似三角形及建立模型是解答此题的关键.22、半圆的半径为;【分析】(1)根据垂径定理的推论得到OD⊥AC,AE=AC,设圆的半径为r,根据勾股定理列出方程,解方程即可;(2)由题意根据圆周角定理得到∠C=90°,根据勾股定理计算即可.【详解】解:于点且,设半径为,则在中有解得:即半圆的半径为;为半圆的直径则在中有.【点睛】本题考查的是圆心角、弧、弦的关系定理、垂径定理,掌握垂直于弦的直径平分这条弦,并且平分弦所对的两条弧是解题的关键.23、(1)y=x2-4x+3.(2)当m=时,四边形AOPE面积最大,最大值为.(3)P点的坐标为:P1(,),P2(,),P3(,),P4(,).【解析】分析:(1)利用对称性可得点D的坐标,利用交点式可得抛物线的解析式;(2)设P(m,m2-4m+3),根据OE的解析式表示点G的坐标,表示PG的长,根据面积和可得四边形AOPE的面积,利用配方法可得其最大值;(3)存在四种情况:如图3,作辅助线,构建全等三角形,证明△OMP≌△PNF,根据OM=PN列方程可得点P的坐标;同理可得其他图形中点P的坐标.详解:(1)如图1,设抛物线与x轴的另一个交点为D,由对称性得:D(3,0),设抛物线的解析式为:y=a(x-1)(x-3),把A(0,3)代入得:3=3a,a=1,∴抛物线的解析式;y=x2-4x+3;(2)如图2,设P(m,m2-4m+3),∵OE平分∠AOB,∠AOB=90°,∴∠AOE=45°,∴△AOE是等腰直角三角形,∴AE=OA=3,∴E(3,3),易得OE的解析式为:y=x,过P作PG∥y轴,交OE于点G,∴G(m,m),∴PG=m-(m2-4m+3)=-m2+5m-3,∴S四边形AOPE=S△AOE+S△POE,=×3×3+PG•AE,=+×3×(-m2+5m-3),=-m2+m,=(m-)2+,∵-<0,∴当m=时,S有最大值是;(3)如图3,过P作MN⊥y轴,交y轴于M,交l于N,∵△OPF是等腰直角三角形,且OP=PF,易得△OMP≌△PNF,∴OM=PN,∵P(m,m2-4m+3),则-m2+4m-3=2-m,解得:m=或,∴P的坐标为(,)或(,);如图4,过P作MN⊥x轴于N,过F作FM⊥MN于M,同理得△ONP≌△PMF,∴PN=FM,则-m2+4m-3=m-2,解得:x=或;P的坐标为(,)或(,);综上所述,点P的坐标是:(,)或(,)或(,)或(,).点睛:本题属于二次函数综合题,主要考查了二次函数的综合应用,相似三角形的判定与性质以及解一元二次方程的方法,解第(2)问时需要运用配方法,解第(3)问时需要运用分类讨论思想和方程的思想解决问题.24、(1)详见解析;(2)或【分析】(1)先证,再证,得到,即可得出结论;(2)分当时和当时两种情况分别求解即可.【详解】(1)∵,∴,∵,,∴,∵是直径,∴,∴,∴,∴,∴,∴是的切线.(2)①当时,,是等边三角形,可得,∵,∴,,∴.②当时,易知,的边上的高,∴.【点睛】此题是圆的综合题,主要考查了切线的性质和判定,等边三角形的判定和性质,求三角形的面积熟练掌握切线的判定与圆周角定理是解题的关键.25、(1)40;(2)39000;(3)答案不唯一,详见解析【分析】(1)用一月份A款的数量乘以,即可得出一月份B款运动鞋销售量;(2)设A,B两款运动鞋的销量单价分别为x元,y元,根据图形中给出的数据,列出算式,再进行计算即可;(3)根据条形统计图和折线统计图所给出的数据,提出合理的建议即可.【详解】解:(1),一月份款运动鞋销售了40双.(2)设两款运动鞋的销售单价分别为元,则根据题意,得,解得三月份的总销售额为(元).(3)答案不唯一,如:从销售量来看,款运动鞋销售量逐月上升,比款运动鞋销售量大,建议多进款运动鞋,少进或不进款运动鞋.从总销售额来看,由于款运动鞋销售量逐月减少,导致总销售额减少,建议采取一些促销手段,增加款运动
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年河南工业职业技术学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 2025年江西水利职业学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 专题03 句子(第3期)
- 专题04 世界古代史(易混易错点)
- 签订二手房买卖合同注意事项
- 民法租赁合同
- 安装灯具合同范本
- 装修工人员工劳动合同
- 渣土运输工程合同
- 直播销售策划合同
- 2025年人教五四新版八年级物理上册阶段测试试卷含答案
- 2025新人教版英语七年级下单词表(小学部分)
- 2025年春季1530安全教育记录主题
- 矿山2025年安全工作计划
- 2025年包装印刷项目可行性研究报告
- 给客户的福利合同(2篇)
- T-WAPIA 052.3-2023 无线局域网设备技术规范 第3部分:接入点和控制器
- 运动技能学习与控制完整
- Unit4MyfamilyStorytime(课件)人教新起点英语三年级下册
- 财务管理专业《生产实习》教学大纲
- 一年级口算天天练(可直接打印)
评论
0/150
提交评论