




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角形内角和定理
在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结。可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷。同学们,你们知道其中的道理吗?内角三兄弟之争问题探究一、三角形的三个内角和是少?º你有什么办法可以验证呢?
三角形的三个内角和是180°从刚才拼角的过程你能想出证明的办法吗?验证:三角形的三个内角和是180°图1图2
图3ABCCBAABBCC
BAB结论:三角形的内角和等于1800.证明:过点A作EF∥BC则∠B=∠2(两直线平行,内错角相等)同理∠C=∠1因为∠2+∠1+∠BAC=1800(平角定义)
所以∠B+∠C+∠BAC=1800(等量代换)已知:△ABC.ABCEF求证:∠A+∠B+∠C=180°EF结论:三角形的内角和等于1800.所以∠B+∠BAC+∠C
=180°
(等量代换)已知:△ABC.求证:∠A+∠B+∠C=180°
ABCL证明:过A作AE∥BC,则∠B=∠1(两直线平行,内错角相等)因为∠1+∠BAC+∠C=180°
(两直线平行,同旁内角互补)证明:延长BC到D,过C作CE∥BA,∴∠A=∠1(两直线平行,内错角相等)∠B=∠2(两直线平行,同位角相等)又∵∠1+∠2+∠ACB=180°∴∠A+∠B+∠ACB=180°21EDCBA三角形的内角和等于1800.证明:过A作EF∥BA,∴∠B=∠2(两直线平行,内错角相等)∠C=∠1(两直线平行,内错角相等)又∵∠2+∠1+∠BAC=180°∴∠B+∠C+∠BAC=180°F21ECBA三角形的内角和等于1800.证明:过A作AE∥BC,∴∠B=∠BAE
(两直线平行,内错角相等)∠EAB+∠BAC+∠C=180°(两直线平行,同旁内角互补)∴∠B+∠C+∠BAC=180°CBEA三角形的内角和等于1800.例:已知三角形三个内角的度数之比为1:3:5,求这三个内角的度数。解:设三个内角度数分别为: x、3x、5x,由三角形内角和为180°得:x+3x+5x=180°解得x=20°所以三个内角度数分别为20°,60°,100°。(1)在△ABC中,∠A=35°,∠B=43°
则∠C=
.(2)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A=
,∠B=
,∠C=
.(3)在△ABC中,∠A=55°,∠B=43°,则∠ACB=
.∠ACD=
。102°80°60°40°尝试练习BACD82°98°检验一下自己吧!1、在△ABC中,∠A=80°,∠B=∠C,则∠C=__。2、已知三角形三个内角的度数之比为1:3:5,则这三个内角的度数分别为——————。5002006001000想一想:本节课你有什么收获?课堂小结(1)一个三角形中最多有
个直角?为什么?(2)一个三角形中最多有
个钝角?为什么?(3)一个三角形中至少有
个锐角?为什么?(4)任意一个三角形中,最大的一个角的度数至少为
.思考:一个三角形中三个角能都小于60度吗?60°211讨论挑战极限:如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西60°方向。从C岛看A、B两岛的视角∠ACB是多少度?北.AD北.CB.东E50°60°80°(1)一个三角形中最多有
个直角?为什么?(2)一个三角形中最多有
个钝角?为什么?(3)一个三角形中至少有
个锐角?为什么?(4)任意一个三角形中,最大的一个角的度数至少为
.思考:一个三角形中三个角能都小于60度吗?60°211讨论课堂练习1、一个三角形最多有
个直角,最多有
个钝角。2、在△ABC中,若∠A+∠B=2∠C,则∠C=
。3、若一个三角形的三个内角之比为2:3:4,则这三个内角的度数为
。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 职业暴露及标准预防考核试题及答案
- 职业暴露的处理流程试题及答案
- 商铺租金优惠租赁补充协议书(2025版)
- 浅谈电子商务合同的成立及履行2025年
- 芮韵的离婚协议书2025年
- 广东省2025年建筑设计(知识)内容辅导:城市总体布局模拟试题
- 汽车租赁合同司机代驾(2025版)
- 离婚协议条款(2025版)
- 2025年多级飘尘采样计项目发展计划
- 2025年高速精密电主轴项目发展计划
- JBT 11699-2013 高处作业吊篮安装、拆卸、使用技术规程
- 电力现货交易培训课件
- 减脂饮食培训课件
- 安全操作规程管理制度3篇
- 【顺丰集团财务共享中心运作问题与优化建议探析15000字(论文)】
- 神经科护理中的病情传递与交接班
- 新版-GSP-:中药材、中药饮片知识培训试题及答案
- 儿童压力性损伤评估量表与预防措施
- 松材线虫病监测普查工作实施方案
- 化学(医药卫生类)中职PPT完整全套教学课件
- 宝马1系双门轿跑说明书
评论
0/150
提交评论