版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
三角形内角和定理
在一个直角三角形里住着三个内角,平时,它们三兄弟非常团结。可是有一天,老二突然不高兴,发起脾气来,它指着老大说:“你凭什么度数最大,我也要和你一样大!”“不行啊!”老大说:“这是不可能的,否则,我们这个家就再也围不起来了……”“为什么?”老二很纳闷。同学们,你们知道其中的道理吗?内角三兄弟之争问题探究一、三角形的三个内角和是少?º你有什么办法可以验证呢?
三角形的三个内角和是180°从刚才拼角的过程你能想出证明的办法吗?验证:三角形的三个内角和是180°图1图2
图3ABCCBAABBCC
BAB结论:三角形的内角和等于1800.证明:过点A作EF∥BC则∠B=∠2(两直线平行,内错角相等)同理∠C=∠1因为∠2+∠1+∠BAC=1800(平角定义)
所以∠B+∠C+∠BAC=1800(等量代换)已知:△ABC.ABCEF求证:∠A+∠B+∠C=180°EF结论:三角形的内角和等于1800.所以∠B+∠BAC+∠C
=180°
(等量代换)已知:△ABC.求证:∠A+∠B+∠C=180°
ABCL证明:过A作AE∥BC,则∠B=∠1(两直线平行,内错角相等)因为∠1+∠BAC+∠C=180°
(两直线平行,同旁内角互补)证明:延长BC到D,过C作CE∥BA,∴∠A=∠1(两直线平行,内错角相等)∠B=∠2(两直线平行,同位角相等)又∵∠1+∠2+∠ACB=180°∴∠A+∠B+∠ACB=180°21EDCBA三角形的内角和等于1800.证明:过A作EF∥BA,∴∠B=∠2(两直线平行,内错角相等)∠C=∠1(两直线平行,内错角相等)又∵∠2+∠1+∠BAC=180°∴∠B+∠C+∠BAC=180°F21ECBA三角形的内角和等于1800.证明:过A作AE∥BC,∴∠B=∠BAE
(两直线平行,内错角相等)∠EAB+∠BAC+∠C=180°(两直线平行,同旁内角互补)∴∠B+∠C+∠BAC=180°CBEA三角形的内角和等于1800.例:已知三角形三个内角的度数之比为1:3:5,求这三个内角的度数。解:设三个内角度数分别为: x、3x、5x,由三角形内角和为180°得:x+3x+5x=180°解得x=20°所以三个内角度数分别为20°,60°,100°。(1)在△ABC中,∠A=35°,∠B=43°
则∠C=
.(2)在△ABC中,∠A:∠B:∠C=2:3:4,则∠A=
,∠B=
,∠C=
.(3)在△ABC中,∠A=55°,∠B=43°,则∠ACB=
.∠ACD=
。102°80°60°40°尝试练习BACD82°98°检验一下自己吧!1、在△ABC中,∠A=80°,∠B=∠C,则∠C=__。2、已知三角形三个内角的度数之比为1:3:5,则这三个内角的度数分别为——————。5002006001000想一想:本节课你有什么收获?课堂小结(1)一个三角形中最多有
个直角?为什么?(2)一个三角形中最多有
个钝角?为什么?(3)一个三角形中至少有
个锐角?为什么?(4)任意一个三角形中,最大的一个角的度数至少为
.思考:一个三角形中三个角能都小于60度吗?60°211讨论挑战极限:如图,C岛在A岛的北偏东50°方向,B岛在A岛的北偏东80°方向,C岛在B岛的北偏西60°方向。从C岛看A、B两岛的视角∠ACB是多少度?北.AD北.CB.东E50°60°80°(1)一个三角形中最多有
个直角?为什么?(2)一个三角形中最多有
个钝角?为什么?(3)一个三角形中至少有
个锐角?为什么?(4)任意一个三角形中,最大的一个角的度数至少为
.思考:一个三角形中三个角能都小于60度吗?60°211讨论课堂练习1、一个三角形最多有
个直角,最多有
个钝角。2、在△ABC中,若∠A+∠B=2∠C,则∠C=
。3、若一个三角形的三个内角之比为2:3:4,则这三个内角的度数为
。
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 高压瓷介电容器项目年度分析报告
- 石河子大学《应急决策理论与方法》2022-2023学年第一学期期末试卷
- 初一上册语文3篇
- 石河子大学《数学文化》2021-2022学年第一学期期末试卷
- 石河子大学《编译原理》2021-2022学年第一学期期末试卷
- 沈阳理工大学《数理统计与随机过程》2021-2022学年第一学期期末试卷
- 沈阳理工大学《控制工程基础与信号处理》2021-2022学年期末试卷
- 2022-23-1 本 概论学习通超星期末考试答案章节答案2024年
- 沈阳理工大学《常微分方程》2022-2023学年第一学期期末试卷
- 国际货物买卖合同术语条款
- 电缆敷设施工方案及安全措施
- 百合干(食品安全企业标准)
- 肺血栓栓塞症临床路径(县级医院版)
- 国开成本会计第10章综合练习试题及答案
- 《西游记》-三打白骨精(剧本台词)精选
- T∕CSCS 012-2021 多高层建筑全螺栓连接装配式钢结构技术标准-(高清版)
- 充电站项目合作方案-高新
- 天然水晶介绍PPT
- 急诊科临床诊疗指南-技术操作规范更新版
- 精通版六年级上册小学英语 Unit 3 单元知识点小结
- 名字的来历-完整版PPT
评论
0/150
提交评论