




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省清连中学2024届高二数学第二学期期末经典模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知集合,,则()A. B. C. D.2.设是实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件3.有10名学生和2名老师共12人,从这12人选出3人参加一项实践活动则恰有1名老师被选中的概率为()A.922 B.716 C.94.动点在圆上移动时,它与定点连线的中点的轨迹方程是()A. B.C. D.5.某空间几何体的三视图如图所示,则该几何体的体积为()A.B.C.D.6.直线是圆的一条对称轴,过点作斜率为1的直线,则直线被圆所截得的弦长为()A. B. C. D.7.在上单调递增,则实数的取值范围为()A. B.C. D.8.甲、乙两人同时报考某一所大学,甲被录取的概率为0.6,乙被录取的概率为0.7,两人是否被录取互不影响,则其中至少有一人被录取的概率为()A.0.12 B.0.42 C.0.46 D.0.889.分子为1且分母为正整数的分数称为单位分数,1可以分拆为若干个不同的单位分数之和:1=12+13+16,A.228 B.240 C.260 D.27310.在等差数列中,如果,且,那么必有,类比该结论,在等比数列中,如果,且,那么必有()A. B.C. D.11.在市高二下学期期中考试中,理科学生的数学成绩,已知,则从全市理科生中任选一名学生,他的数学成绩小于110分的概率为()A.0.15 B.0.50 C.0.70 D.0.8512.一台机器在一天内发生故障的概率为,若这台机器一周个工作日不发生故障,可获利万元;发生次故障获利为万元;发生次或次以上故障要亏损万元,这台机器一周个工作日内可能获利的数学期望是()万元.(已知,)A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在极坐标系中,点到直线的距离为________.14.已知直线l的普通方程为x+y+1=0,点P是曲线上的任意一点,则点P到直线l的距离的最大值为______.15.中,角的对边分別是,已知,则_______.16.有粒种子分种在个坑内,每坑放粒,每粒种子发芽概率为,若一个坑内至少有粒种子发芽,则这个坑不需要补种;若一个坑内的种子都没有发芽,则这个坑需要补种,假定每个坑至多补种一次,需要补种的坑数为的概率等于_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,已知椭圆经过点,且其左右焦点的坐标分别是,.(1)求椭圆的离心率及标准方程;(2)设为动点,其中,直线经过点且与椭圆相交于,两点,若为的中点,是否存在定点,使恒成立?若存在,求点的坐标;若不存在,说明理由18.(12分)如图,三棱柱ABC-A1B1C1中,CA=CB,AB="A"A1,∠BAA1=60°.(Ⅰ)证明AB⊥A1C;(Ⅱ)若平面ABC⊥平面AA1B1B,AB=CB,求直线A1C与平面BB1C1C所成角的正弦值.19.(12分)已知函数(其中,为自然对数的底数).(Ⅰ)若函数无极值,求实数的取值范围;(Ⅱ)当时,证明:.20.(12分)已知命题关于的方程的解集至多有两个子集,命题,,若是的必要不充分条件,求实数的取值范围.21.(12分)已知函数.(1)若不等式无解,求实数的取值范围;(2)当时,函数的最小值为,求实数的值.22.(10分)函数,.(Ⅰ)求函数的极值;(Ⅱ)若,证明:当时,.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
先求出集合M,由此能求出M∩N.【题目详解】则故选:C【题目点拨】本题考查交集的求法,考查交集定义、函数性质等基础知识,考查运算求解能力,是基础题.2、B【解题分析】
求解不等式,根据充分条件和必要条件的定义分别进行判断即可.【题目详解】解:设是实数,若“”则:,即:,不能推出“”若:“”则:,即:,能推出“”由充要条件的定义可知:是实数,则“”是“”的必要不充分条件;故选:B.【题目点拨】本题考查了充分条件和必要条件的判定,考查了推理能力与计算能力,属于基础题.3、A【解题分析】
先求出从12人中选3人的方法数,再计算3人中有1人是老师的方法数,最后根据概率公式计算.【题目详解】从12人中选3人的方法数为n=C123=220,3人中愉有∴所求概率为P=m故选A.【题目点拨】本题考查古典概型,解题关键是求出完成事件的方法数.4、B【解题分析】
设连线的中点为,再表示出动点的坐标,代入圆化简即可.【题目详解】设连线的中点为,则因为动点与定点连线的中点为,故,又在圆上,故,即即故选:B【题目点拨】本题主要考查了轨迹方程的一般方法,属于基础题型.5、B【解题分析】试题分析:由三视图可知,该几何体是一个四棱锥挖掉半个圆锥所得,所以体积为.考点:三视图.6、C【解题分析】由是圆的一条对称轴知,其必过圆心,因此,则过点斜率为1的直线的方程为,圆心到其距离,所以弦长等于,故选C.7、D【解题分析】
利用函数在连续可导且单调递增,可得导函数在大于等于0恒成立即可得到的取值范围.【题目详解】因为函数在连续可导且单调递增,所以在恒成立,分离参数得恒成立,即,故选D.【题目点拨】本题考查函数在区间内单调递增等价于在该区间内恒成立.8、D【解题分析】由题意知,甲、乙都不被录取的概率为(1-0.6)(1-0.7)=0.12.∴至少有一人被录取的概率为1-0.12=0.88.故选D.考点:相互独立事件的概率.9、C【解题分析】
使用裂项法及m,n的范围求出m,n的值,从而求出答案.【题目详解】∵1=1∴1=1∴1∵m⩽n,m,n∈N∴m=13,n=20,所以mn=260.故选:C【题目点拨】本题主要考查归纳推理和裂项相消法,意在考查学生对该知识的理解掌握水平,属于基础题.10、D【解题分析】分析:结合等差数列与等比数列具有的类比性,且等差数列与和差有关,等比数列与积商有关的特点,即可类比得到结论.详解:由题意,类比上述性质:在等比数列中,则由“如果,且”,则必有“”成立,故选D.点睛:本题主要考查了等差数列与等比数列之间的类比推理,其中类比推理的一般步骤:①找出等差数列与等比数列之间的相似性或一致性;②用等差数列的性质取推测等比数列的性质,得到一个明确的结论(或猜想).11、D【解题分析】
根据正态密度曲线的对称性得出,于是可计算出,于此可得出结果.【题目详解】由于,由正态密度曲线的对称性可得,因此,,故选D.【题目点拨】本题考查正态分布在指定区间上的概率的计算,解题的关键在于利用正态密度曲线的对称性将所求概率转化为已知区间概率进行计算,属于基础题.12、C【解题分析】
设获利为随机变量,可得出的可能取值有、、,列出随机变量的分布列,利用数学期望公式计算出随机变量的数学期望.【题目详解】设获利为随机变量,则随机变量的可能取值有、、,由题意可得,,则.所以,随机变量的分布列如下表所示:因此,随机变量的数学期望为,故选C.【题目点拨】本题考查随机变量数学期望的计算,解题的关键就是根据已知条件列出随机变量的分布列,考查运算求解能力,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、3【解题分析】
将A和直线化成直角坐标系下点和方程,再利用点到直线的距离公式计算即可.【题目详解】由已知,在直角坐标系下,,直线方程为,所以A到直线的距离为.故答案为:3【题目点拨】本题考查极坐标方程与普通方程的互化,点到直线的距离,考查学生的运算求解能力,是一道容易题.14、【解题分析】
根据曲线的参数方程,设,再由点到直线的距离以及三角函数的性质,即可求解.【题目详解】由题意,设,则到直线的距离,故答案为.【题目点拨】本题主要考查了曲线的参数方程的应用,其中解答中根据曲线的参数方程设出点的坐标,利用点到直线的距离公式和三角函数的性质求解是解答的关键,着重考查了推理与运算能力,属于基础题.15、【解题分析】
化简已知等式可得sinC=1,又a=b,由余弦定理可得:cosC=sinC,利用两角差的正弦函数公式可求sin(C)=0,结合范围C∈(,),可求C的值.【题目详解】∵c2=2b2(1﹣sinC),∴可得:sinC=1,又∵a=b,由余弦定理可得:cosC1sinC,∴sinC﹣cosC=0,可得:sin(C)=0,∵C∈(0,π),可得:C∈(,),∴C0,可得:C.故答案为【题目点拨】本题主要考查了余弦定理,两角差的正弦函数公式,正弦函数的图象和性质在解三角形中的应用,考查了转化思想和数形结合思想的应用,属于基础题.16、【解题分析】
先计算出粒种子都没有发芽的概率,即得出每个坑需要补种的概率,然后利用独立重复试验的概率得出所求事件的概率.【题目详解】由独立事件的概率乘法公式可知,粒种子没有粒发芽的概率为,所以,一个坑需要补种的概率为,由独立重复试验的概率公式可得,需要补种的坑数为的概率为,故答案为.【题目点拨】本题考查独立事件概率乘法公式的应用,同时也考查了独立重复试验恰有次发生的概率,要弄清楚事件的基本类型,并结合相应的概率公式进行计算,考查分析问题和理解问题的能力,属于中等题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),;(2)在定点【解题分析】
(1)根据椭圆的焦点得到,根据椭圆过点,由椭圆的定义得到,再求出,从而得到椭圆的离心率和标准方程;(2)设,,则,,利用点差法,得到,从而表示出线段的垂直平分线,再根据直线过定点,得到关于的方程组,得到定点的坐标.【题目详解】(1)设椭圆方程:.∴.∵椭圆经过点,∴,∴,可得.椭圆的离心率为,椭圆标准方程:.(2)设,,因为为中点,则,.∵、在曲线上,∴,将以上两式相减得:.所以得到,∴线段的垂直平分线方程:,整理得令,得故线段的垂直平分线过定点.所以存在定点,使恒成立.【题目点拨】本题考查根据椭圆定义求椭圆标准方程和离心率,直线与椭圆的位置关系,点差法表示线段垂直平分线,椭圆中直线过的定点,属于中档题.18、(1)见解析(2).【解题分析】
试题分析:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,由已知可证OA1⊥AB,AB⊥平面OA1C,进而可得AB⊥A1C;(Ⅱ)易证OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立坐标系,可得,,的坐标,设=(x,y,z)为平面BB1C1C的法向量,则,可解得=(,1,﹣1),可求|cos<,>|,即为所求正弦值.解:(Ⅰ)取AB的中点O,连接OC,OA1,A1B,因为CA=CB,所以OC⊥AB,由于AB=AA1,∠BAA1=60°,所以△AA1B为等边三角形,所以OA1⊥AB,又因为OC∩OA1=O,所以AB⊥平面OA1C,又A1C⊂平面OA1C,故AB⊥A1C;(Ⅱ)由(Ⅰ)知OC⊥AB,OA1⊥AB,又平面ABC⊥平面AA1B1B,交线为AB,所以OC⊥平面AA1B1B,故OA,OA1,OC两两垂直.以O为坐标原点,的方向为x轴的正向,||为单位长,建立如图所示的坐标系,可得A(1,0,0),A1(0,,0),C(0,0,),B(﹣1,0,0),则=(1,0,),=(﹣1,,0),=(0,﹣,),设=(x,y,z)为平面BB1C1C的法向量,则,即,可取y=1,可得=(,1,﹣1),故cos<,>==,又因为直线与法向量的余弦值的绝对值等于直线与平面的正弦值,故直线A1C与平面BB1C1C所成角的正弦值为:.考点:用空间向量求直线与平面的夹角;直线与平面垂直的性质;平面与平面垂直的判定;直线与平面所成的角.19、(1)实数的取值范围是;(2)见解析.【解题分析】分析:(1)因为函数无极值,所以在上单调递增或单调递减.即或在时恒成立,求导分析整理即可得到答案;(2)由(Ⅰ)可知,当时,当时,,即.欲证,只需证即可,构造函数=(),求导分析整理即可.详解:(Ⅰ)函数无极值,在上单调递增或单调递减.即或在时恒成立;又,令,则;所以在上单调递减,在上单调递增;,当时,,即,当时,显然不成立;所以实数的取值范围是.(Ⅱ)由(Ⅰ)可知,当时,当时,,即.欲证,只需证即可.构造函数=(),则恒成立,故在单调递增,从而.即,亦即.得证.点睛:可以从所证不等式的结构和特点出发,结合已有的知识利用转化与化归思想,构造一个新的函数,再借助导数确定函数的单调性,利用单调性实现问题的转化,从而使不等式得到证明,其一般步骤是:构造可导函数→研究单调性或最值→得出不等关系→整理得出结论.20、【解题分析】
先求出命题为真命题时实数的取值范围,由是的必要不充分条件,得出命题中的集合是命题中的集合的真子集,于是得出不等式求解,可得出实数的取值范围。【题目详解】当命题是真命题时,则关于的方程的解集至多有两个子集,即关于的方程的解集至多只有一个实数解,,化简得,解得,或,且或,由于是的必要不充分条件,则,所以
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 《机器学习技术应用》课件-pro1-2-1校园消费数据的读取与查看
- 《移动通信技术》课件-主题5 移动通信的编码技术
- 先天性鼻咽部狭窄及闭锁的临床护理
- OPT美肤的临床护理
- 手外伤的临床护理
- 2025【合同范本】简化版租约协议示例
- 企业招聘2025内蒙古方鼎金荣集团派驻联通数字科技有限公司内蒙古分公司招聘53人笔试参考题库附带答案详解
- 《2025合同违约金预先扣除的法律后果》
- 2025陕西西凤露酒有限公司招聘(38人)笔试参考题库附带答案详解
- 2025《数据中心升级改造合同》
- 01K403 风机盘管安装
- 药理学教学课件:抗流感病毒药
- 2023年承德县小升初英语考试题库及答案解析
- 2023年大学生《思想道德与法治》考试题库附答案(712题)
- GB/T 7705-2008平版装潢印刷品
- GB/T 41326-2022六氟丁二烯
- 广西玉林市容县十里中学九年级化学 酸碱盐复习课件 人教新课标版
- 铲车三个月、半年、年保养记录(新)
- 重力坝毕业设计-水电站混凝土重力坝工程设计
- 脑电图(图谱)课件
- 《概率思想对几个恒等式的证明(论文)9600字》
评论
0/150
提交评论