




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届豫南九校高二数学第二学期期末达标检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数,有且仅有一个零点,则实数a的值为()A. B. C. D.2.要将甲、乙、丙、丁名同学分到三个班级中,要求每个班级至少分到一人,则甲被分到班的概率为()A. B. C. D.3.函数f(x)=13ax3A.a>1 B.a≥1 C.a>2 D.a≥24.已知等差数列的前项和为,若,则()A.3 B.9 C.18 D.275.定义“规范01数列”{an}如下:{an}共有2m项,其中m项为0,m项为1,且对任意,中0的个数不少于1的个数.若m=4,则不同的“规范01数列”共有A.18个 B.16个C.14个 D.12个6.下列函数中,既是偶函数,又在区间上单调递增的是()A. B. C. D.7.从装有4粒大小、形状相同,颜色不同的玻璃球的瓶中,随意一次倒出若干粒玻璃球(至少一粒),则倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率()A.小 B.大 C.相等 D.大小不能确定8.下列选项中,说法正确的是()A.命题“”的否定是“”B.命题“为真”是命题“为真”的充分不必要条件C.命题“若,则”是假命题D.命题“在中,若,则”的逆否命题为真命题9.若实数满足不等式组,则的最大值为()A.0 B.4 C.5 D.610.已知函数的定义域为,集合,则()A. B. C. D.11.若复数满足,则的虚部为A. B. C.1 D.12.已知集合,,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.直角坐标系下点的极坐标为______.14.已知(其中,为自然对数的底数),若在上有三个不同的零点,则的取值范围是________.15.已知函数是上奇函数,且当时,则__________.16.复数(是虚数单位)的虚部是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,三棱柱中,,,(1)证明:;(2)若平面
平面,,求点到平面的距离.18.(12分)如图,在四棱锥中,平面,四边形为正方形,为的中点,点在上,平面平面.(1)求证:平面;(2)求三棱锥的体积.19.(12分)(选修4-5.不等式选讲)已知函数的最小值为.(1)求实数的值;(2)若,且,求证:.20.(12分)已知椭圆:的离心率,该椭圆中心到直线的距离为.(1)求椭圆的方程;(2)是否存在过点的直线,使直线与椭圆交于,两点,且以为直径的圆过定点?若存在,求出所有符合条件的直线方程;若不存在,请说明理由.21.(12分)已知椭圆C:的左、右顶点分别为A,B其离心率,点M为椭圆上的一个动点,面积的最大值是求椭圆C的方程;若过椭圆C右顶点B的直线l与椭圆的另一个交点为D,线段BD的垂直平分线与y轴交于点P,当时,求点P的坐标.22.(10分)在如图所示的六面体中,面是边长为的正方形,面是直角梯形,,,.(Ⅰ)求证://平面;(Ⅱ)若二面角为,求直线和平面所成角的正弦值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
先由题意得到方程在上仅有一个实根;令,得到函数与直线在上仅有一个交点;用导数的方法判断单调性,求出最值,结合图像,即可得出结果.【题目详解】因为函数,有且仅有一个零点;所以方程在上仅有一个实根;即方程在上仅有一个实根;令,则函数与直线在上仅有一个交点;因为,由得,因为,所以;由得,因为,所以;所以,函数在上单调递减,在上单调递增;因此作出函数的大致图像如下:因为函数与直线在上仅有一个交点,所以,记得.故选B【题目点拨】本题主要考查利用导数研究函数的零点,通常将函数零点问题,转化为两函数图像交点的问题,结合图像求解即可,属于常考题型.2、B【解题分析】
根据题意,先将四人分成三组,再分别分给三个班级即可求得总安排方法;若甲被安排到A班,则分甲单独一人安排到A班和甲与另外一人一起安排到A班两种情况讨论,即可确定甲被安排到A班的所有情况,即可求解.【题目详解】将甲、乙、丙、丁名同学分到三个班级中,要求每个班级至少分到一人,则将甲、乙、丙、丁名同学分成三组,人数分别为1,1,2;则共有种方法,分配给三个班级的所有方法有种;甲被分到A班,有两种情况:一,甲单独一人分到A班,则剩余两个班级分别为1人和2人,共有种;二,甲和另外一人分到A班,则剩余两个班级各1人,共有种;综上可知,甲被分到班的概率为,故选:B.【题目点拨】本题考查了排列组合问题的综合应用,分组时注意重复情况的出现,属于中档题.3、D【解题分析】
根据fx单调递增可知f'x≥0在1,2【题目详解】由题意得:ffx在1,2上单调递增等价于:f'x即:ax2当x∈1,2时,2x本题正确选项:D【题目点拨】本题考查根据函数在区间上的单调性求解参数范围的问题,关键是能够将问题转化为恒成立问题,从而利用分离变量的方式来进行求解.4、D【解题分析】设等差数列的首项为,公差为.∵∴,即∴∴故选D.5、C【解题分析】
试题分析:由题意,得必有,,则具体的排法列表如下:,01010011;010101011,共14个【题目点拨】求解计数问题时,如果遇到情况较为复杂,即分类较多,标准也较多,同时所求计数的结果不太大时,往往利用表格法、树状图将其所有可能一一列举出来,常常会达到岀奇制胜的效果.6、D【解题分析】分析:根据函数奇偶性和单调性的定义和性质,对选项中的函数逐一验证判断即可.详解:四个选项中的函数都是偶函数,在上三个函数在上都递减,不符合题意,在上递增的只有,而故选D.点睛:本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质,意在考查综合应用所学知识解决问题的能力.7、B【解题分析】试题分析:四种不同的玻璃球,可设为,随意一次倒出一粒的情况有4种,倒出二粒的情况有6种,倒出3粒的情况有4种,倒出4粒的情况有1种,那么倒出奇数粒的有8种,倒出偶数粒的情况有7种,故倒出奇数粒玻璃球的概率比倒出偶数粒玻璃球的概率大.考点:古典概型.8、C【解题分析】对于A,命题“”的否定是“”,故错误;对于B,命题“为真”是命题“为真”的必要不充分条件,故错误;对于C,命题“若,则”在时,不一定成立,故是假命题,故正确;对于D,“在中,若,则或”为假命题,故其逆否命题也为假命题,故错误;故选C.9、B【解题分析】
确定不等式组表示的平面区域,明确目标函数的几何意义,即可求得z=2x+y的最大值.【题目详解】不等式组表示的平面区域如图:z=2x+y表示直线y=﹣2x+z的纵截距,由图象可知,在A(1,2)处z取得最大值为4故选:B.【题目点拨】本题考查线性规划知识,考查数形结合的数学思想,解题的关键是确定不等式组表示的平面区域,明确目标函数的几何意义,属于基础题.10、D【解题分析】,解得,即,,所以,故选D.11、A【解题分析】,虚部为.【考点】复数的运算与复数的定义.12、B【解题分析】
可求出集合B,然后进行交集的运算即可.【题目详解】B={x|x≤2};∴A∩B={1,2}.故选:B.【题目点拨】本题考查描述法、列举法表示集合的定义,以及交集的运算.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
由,将直角坐标化为极坐标。【题目详解】,,又因为位于第三象限且,所以,所以极坐标为【题目点拨】本题考查直角坐标与极坐标的互化,解题的关键是注意角的取值范围,属于基础题。14、【解题分析】
先按照和两种情况求出,再对和分别各按照两种情况讨论求出,最后令,求出函数的零点,恰好有三个.因此只要求出的三个零点满足各自的范围即可.【题目详解】解:当时,,当时,由,可得,当时,由,可得.当时,,当时,由,可得无解,当时,由,可得.因为在上有三个不同的零点,所以,解得.故答案为:.【题目点拨】本题考查函数的零点,分段函数,分类讨论的思想,属于难题.15、【解题分析】分析:先求,再根据奇函数得.详解:因为,因为函数是上奇函数,所以点睛:已知函数的奇偶性求函数值或解析式,首先抓住奇偶性讨论函数在各个区间上的解析式,或充分利用奇偶性得出关于的方程,从而可得的值或解析式.16、【解题分析】
分子和分母同时乘以分母的共轭复数,化简复数,即可求得虚部.【题目详解】复数的虚部是:.故答案为:.【题目点拨】本题主要考查了复数的四则运算,以及复数的基本概念的应用,其中解答中熟练应用复数的运算法则化简是解答的关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析(2)【解题分析】试题分析:(1)利用题意首先证得,然后利用线面垂直的定义即可证得题中的结论;(2)建立空间直角坐标系,结合平面的法向量和直线的方向向量可得直线与平面所成角的正弦值是.试题解析:(1)证明:如图所示,取的中点,连接,,.因为,所以.由于,,故为等边三角形,所以.因为,所以.又,故(2)由(1)知,,又,交线为,所以,故两两相互垂直.以为坐标原点,的方向为轴的正方向,为单位长,建立如图(2)所示的空间直角坐标系.由题设知,则,,.设是平面的法向量,则即可取故.所以与平面所成角的正弦值为18、(1)详见解析(2)【解题分析】
(1)在平面内知道两条相交直线与垂直,利用判定定理即可完成证明;(2)通过辅助线,将与平行四边形关联,从而计算出长度,然后即可求解三棱锥的体积.【题目详解】解:(1)平面,,又四边形为正方形,,且,平面,为的中点,,且,平面;(2)作于,连接,如图所示:平面平面,面,由(1)知平面,,又平面平面,面,平面,平面,平面平面,平面,四边形为平行四边形,为的中点,,【题目点拨】本题考查立体几何中的线面垂直关系证明以及体积计算,难度一般.计算棱锥体积的时候,可以采取替换顶点位置的方式去计算,这样有时候能简化运算.19、(1)3(2)见解析【解题分析】试题分析:(1)利用绝对值的三角不等式,即可求解函数的最小值,从而得到实数的值;(2)由(1)知,且,利用柯西不等式作出证明即可.试题解析:(1)因为,当且仅当,即时取等号,所以的最小值为3,于是(2)由(1)知,且,由柯西不等式得.20、(1).(2)存在直线:或:,使得以为直径的圆经过点.【解题分析】分析:由,该椭圆中心到直线的距离为,求出椭圆方程;(2)先假设存在这样的直线,设出直线方程(注意考虑斜率),与椭圆联立,考虑然后设,,利用韦达定理,利用为直径的圆过定点,转化,转化坐标构造方程进行求解.详解:(1)直线的一般方程为,依题意得,解得,所以椭圆的方程为.(2)当直线的斜率不存在时,直线即为轴,此时,为椭圆的短轴端点,以为直径的圆经过点.当直线的斜率存在时,设其斜率为,由,得.所以,得.设,,则,①而.因为以为直径的圆过定点,所以,则,即.所以.②将①式代入②式整理解得.综上可知,存在直线:或:,使得以为直径的圆经过点.点晴:本题考查直线与椭圆的位置关系,这类题目一般涉及设直线方程,然后和椭圆联立,设点,考虑,然后利用韦达定理,接下来就是对题干的转化啦,本题中典型的垂直问题,主要转化方向就是向量点乘,因为斜率的话还需要考虑斜率是否存在.21、(1)(2)当时,,当时,【解题分析】
(1)由题意可知解方程即可得解;(2)设直线的方程为,,由直线与椭圆联立得,由根与系数的关系可得,从而得中点的坐标,进而得的垂直平分线方程,令x=0可得,再由,用坐标表示即可解.【题目详解】(1)由题意可知解得,,所以椭圆方程为.(2)由(1)知,设直线的方程为,,把代入椭圆方程,整理得,所以,则,所以中点的坐标为,则直线的垂直平分线方程为,得又,即,化简得,解得故当时,,当时,.【题目点拨】本题主要考查了直线与椭圆的位置关系,用到了向量问题坐标化,坐标通过设而不求的方程灵活处理,考查了学生的运算能力,属于中档题.22、(1)证明见解析.(2).【解题分析】试题分析:(1)连接相
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- T-ZTSS 0002-2024 同山烧酒评价规范
- T-ZJSEIA 007-2024 产品碳足迹评价技术规范光伏组件
- 二零二五年度健康产业商家入驻战略合作协议
- 2025年度离婚财产分割与子女财产继承协议
- 二零二五年度个人之间房产交易保密协议
- 二零二五年度按揭房屋借款协议书(公积金贷款)
- 2025年度篮球运动员转会合同解除条件
- 二零二五年度超市租赁合同书:超市租赁及绿色环保产品合作协议
- 二零二五年度智能交通投资暗股协议
- 2025年度职业电竞选手私教训练协议
- COP生产一致性控制计划
- 2025年电力人工智能多模态大模型创新技术及应用报告-西安交通大学
- 天津2025年天津市机关后勤事务服务中心分支机构天津市迎宾馆招聘2人笔试历年参考题库附带答案详解
- 2025年江苏南京技师学院招聘工作人员19人高频重点模拟试卷提升(共500题附带答案详解)
- 华东师大版七年级数学下册“第1周周考”
- DBJ50-T-385-2023半柔性复合路面技术标准
- 职业院校教师人工智能素养:内涵流变、框架构建与生成路径
- 如何在初中数学教学中提升学生的核心素养
- (完整版)小学一年级数学20以内进退位加减法(1600道题)计算卡
- 2025年包头铁道职业技术学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 2024年道路运输企业安全生产管理人员证考试题库
评论
0/150
提交评论