湖北省普通高中协作体2024届数学高二第二学期期末质量跟踪监视模拟试题含解析_第1页
湖北省普通高中协作体2024届数学高二第二学期期末质量跟踪监视模拟试题含解析_第2页
湖北省普通高中协作体2024届数学高二第二学期期末质量跟踪监视模拟试题含解析_第3页
湖北省普通高中协作体2024届数学高二第二学期期末质量跟踪监视模拟试题含解析_第4页
湖北省普通高中协作体2024届数学高二第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

湖北省普通高中协作体2024届数学高二第二学期期末质量跟踪监视模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.函数在上的最小值和最大值分别是A. B. C. D.2.已知复数z=2i1-i,则A.第一象限 B.第二象限 C.第三象限 D.第四象限3.若,则等于()A.2 B.0 C.-2 D.-44.为预测某种产品的回收率y,需要研究它和原料有效成分的含量x之间的相关关系,现取了8组观察值.计算得,,,,则y对x的回归方程是()A.=11.47+2.62x B.=-11.47+2.62xC.=2.62+11.47x D.=11.47-2.62x5.函数则函数的零点个数是()A. B. C. D.6.在各项都为正数的等差数列{an}中,若a1+a2+…+a10=30,则a5•a6的最大值等于()A.3B.6C.9D.367.已知函数的最大值为,最小值为,则等于()A.0 B.2 C.4 D.88.已知命题:,,若是真命题,则实数的取值范围为()A. B. C. D.9.设,则()A. B. C. D.10.已知实数成等差数列,且曲线取得极大值的点坐标为,则等于()A.-1 B.0 C.1 D.211.二项式展开式中常数项等于()A.60 B.﹣60 C.15 D.﹣1512.已知集合P={x|x2-2x≥0},Q={x|1<x≤2},则(∁RP)∩Q=()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.函数的定义域为_______________.14.已知线段AB长为3,A、B两点到平面的距离分别为1与2,则AB所在直线与平面所成角的大小为________.15.直线与圆相交的弦长为__________.16.若x,y满足x+1≤y≤2x,则2y−x的最小值是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角,,的对边分别是,且.(1)求角的大小;(2)已知等差数列的公差不为零,若,且,,成等比数列,求数列的前项和.18.(12分)已知.(1)求的值;(2)当时,求的最大值.19.(12分)椭圆:过点,且离心率为.(1)求椭圆的方程;(2)如图,过点的直线与椭圆相交于两个不同的点,,求的取值范围.20.(12分)已知数列满足.(1)求;(2)求数列的前n项和;(3)已知是公比q大于1的等比数列,且,,设,若是递减数列,求实数的取值范围21.(12分)如图,在四棱锥中,底面为菱形,,又底面,,为的中点.(1)求证:;(2)求平面与平面所成锐二面角的余弦值.22.(10分)在平面直角坐标系中,曲线的参数方程为(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出的普通方程和的直角坐标方程;(2)设点在上,点在上,求的最小值及此时的直角坐标.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

求出f(x)的导数,利用导函数的正负,求出函数的单调区间,从而求出函数的最大值和最小值即可.【题目详解】函数,cosx,令>0,解得:x,令<0,解得:0≤x,∴f(x)在[0,)递减,在(,]递增,∴f(x)min=f(),而f(0)=0,f()1,故f(x)在区间[0,]上的最小值和最大值分别是:.故选:A.【题目点拨】本题考查了利用导数研究函数的单调性、最值问题,考查函数值的运算,属于基础题.2、C【解题分析】分析:根据复数的运算,求得复数z,再利用复数的表示,即可得到复数对应的点,得到答案.详解:由题意,复数z=2i1-i所以复数z在复平面内对应的点的坐标为(-1,-1),位于复平面内的第三象限,故选C.点睛:本题主要考查了复数的四则运算及复数的表示,其中根据复数的四则运算求解复数z是解答的关键,着重考查了推理与运算能力.3、D【解题分析】

先求导,算出,然后即可求出【题目详解】因为,所以所以,得所以,所以故选:D【题目点拨】本题考查的是导数的计算,较简单.4、A【解题分析】分析:根据公式计算≈2.62,≈11.47,即得结果.详解:由,直接计算得≈2.62,≈11.47,所以=2.62x+11.47.选A.点睛:函数关系是一种确定的关系,相关关系是一种非确定的关系.事实上,函数关系是两个非随机变量的关系,而相关关系是非随机变量与随机变量的关系.如果线性相关,则直接根据用公式求,写出回归方程,回归直线方程恒过点.5、A【解题分析】

通过对式子的分析,把求零点个数转化成求方程的根,结合图象,数形结合得到根的个数,即可得到零点个数.【题目详解】函数的零点即方程和的根,函数的图象如图所示:由图可得方程和共有个根,即函数有个零点,故选:A.【题目点拨】本题考查函数的零点与方程的根的个数的关系,注意结合图象,利用数形结合求得结果时作图很关键,要标准.6、C【解题分析】试题分析:由题设,所以,又因为等差数列各项都为正数,所以,当且仅当时等号成立,所以a5·a6的最大值等于9,故选C.考点:1、等差数列;2、基本不等式.7、C【解题分析】

因为,所以是奇函数,则由奇函数的性质,又因为,,即,,故,即,应选答案C.8、A【解题分析】分析:先写出命题的否定形式,将其转化为恒成立问题,求出的值.详解:命题:,,则为,是真命题,即恒成立,的最大值为1,所以故选A.点睛:含有一个量词的命题的否定命题命题的否定9、B【解题分析】分析:先分析出ab<0,a+b<0,再利用作差法比较的大小关系得解.详解:由题得<ln1=0,>.所以ab<0..所以,所以.故答案为B.点睛:(1)本题主要考查实数大小的比较和对数函数的性质,考查对数的运算,意在考查学生对这些知识的掌握水平和基本运算能力.(2)解答本题的关键是对数的运算.10、B【解题分析】由题意得,,解得由于是等差数列,所以,选B.11、A【解题分析】

化简二项式展开式的通项公式,由此计算的系数,从而得出正确选项.【题目详解】当时,即,故常数项为,选A.【题目点拨】本小题主要考查二项式展开式的通项公式,考查运算求解能力,属于基础题.12、C【解题分析】

先化简集合A,再求,进而求.【题目详解】x(x-2)≥0,解得:x≤0或x≥2,即P=(-∞,0]∪[2,+∞)由题意得,=(0,2),∴,故选C.【题目点拨】本题考查的是有关集合的运算的问题,在解题的过程中,要先化简集合,明确集合的运算法则,进而求得结果.二、填空题:本题共4小题,每小题5分,共20分。13、{x|x∈(2kπ﹣,2kπ+),k∈Z}【解题分析】分析:这里的cosx以它的值充当角,要使sin(cosx)>0转化成2kπ<cosx<2kπ+π,注意cosx自身的范围.详解:由sin(cosx)>0⇒2kπ<cosx<2kπ+π(k∈Z).又∵﹣1≤cosx≤1,∴0<cosx≤1;故所求定义域为{x|x∈(2kπ﹣,2kπ+),k∈Z}.故答案为:{x|x∈(2kπ﹣,2kπ+),k∈Z}.点睛:本题主要考查了函数的定义域及其求法及复合函数单调性的判断,求三角函数的定义域,要解三角不等式,常用的方法有二:一是图象,二是三角函数线.14、或【解题分析】

根据A、B两点与平面的位置分类讨论,再解三角形求线面角.【题目详解】A,B两点在平面同侧时,如图:为AB所在直线与平面所成角,因为A,B两点在平面异侧时,,所以AB所在直线与平面所成角为故答案为:或【题目点拨】本题考查线面角以及直线与平面位置关系,考查基本分析求解能力,属中档题.15、【解题分析】

将极坐标方程化为直角坐标系方程是常用方法.【题目详解】将直线化为普通方程为:,∵,∴,化为普通方程为:,即,联立得,解得,∴直线与圆相交的弦长为,故答案为.考点:简单曲线的极坐标方程.16、3【解题分析】

分析:作可行域,根据目标函数与可行域关系,确定最小值取法.详解:作可行域,如图,平移直线,由图可知直线过点A(1,2)时,取最小值3.点睛:线性规划的实质是把代数问题几何化,即数形结合的思想.需要注意的是:一,准确无误地作出可行域;二,画目标函数所对应的直线时,要注意与约束条件中的直线的斜率进行比较,避免出错;三,一般情况下,目标函数的最大或最小值会在可行域的端点或边界上取得.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】

1)首先利用正弦定理和三角函数关系式的恒等变换求出C的值.(2)利用(1)的结论,进一步利用等差数列的性质求出数列的首项和公差,进一步求出数列的通项公式,最后利用裂项相消法求出数列的和.【题目详解】(1)在△ABC中,角A,B,C的对边分别是a,b,c,且acosB+bcosA=2ccosC.利用正弦定理sinAcosB+sinBcosA=2sinCcosC,所以sin(A+B)=sinC=2sinCcosC,由于0<C<π,解得C.(2)设公差为d的等差数列{an}的公差不为零,若a1cosC=1,则a1=2,且a1,a3,a7成等比数列,所以,解得d=1.故an=2+n﹣1=n+1.所以,所以,,.【题目点拨】本题考查的知识要点:正弦定理的应用,等差数列的性质的应用,裂项相消法在数列求和中的应用,主要考察学生的运算能力和转换能力,属于基础题型.18、(1)(2)【解题分析】分析:(1)分别令,,两式相加可得的值;设最大,则有,即解之即可.详解:(1)令可得,,令可得,,两式相加可得:,所以;(2)因为,所以,设最大,则有,即,解得,因为,所以,此时的最大值为.点睛:本题主要考查二项式定理的应用,属于中档题.19、(1);(2).【解题分析】分析:(1)根据题意得到a,b,c的方程组,解方程组即得椭圆的方程.(2)先考虑直线l的斜率不存在时的值,再考虑当直线l的斜率存在时,的范围,最后综合得到的范围.详解:(1)由题得所以椭圆的方程为.(2)①当直线l的斜率不存在时,,所以.②当直线l的斜率存在时,设直线l的方程为,消去y整理得,由,可得,且,所以,所以,综上.点睛:(1)本题主要考查椭圆标准方程的求法,考查直线和椭圆的位置关系和最值问题,意在考查学生对这些基础知识的掌握水平和分析推理能力基本计算能力.(2)设直线的方程时,如果涉及斜率,一定要分斜率存在和不存在两种情况讨论,所以本题要先讨论当直线l的斜率不存在时的值.20、(1)(2)(3).【解题分析】

(1)利用项和转换可得,即得;(2),裂项求和法可得解;(3)代入,可得.,转化是递减数列为恒成立,化简可得,恒成立,又是递减数列,即得解.【题目详解】(1)由题意,数列的前n项和.当时,有,所以.当时,.所以,当时,.又符合时与n的关系式,所以.(2),.(3)由,得.又,所以.所以..因为是递减数列,所以,即.化简得.所以,恒成立.又是递减数列,所以的最大项为.所以,即实数的取值范围是.【题目点拨】本题考查了数列综合,考查了项和转换、裂项求和、数列的单调性等知识点,考查了学生综合分析,转化划归,分类讨论,数学运算的能力,属于较难题.21、(1)证明见解析.(2).【解题分析】分析:(1)根据菱形的性质以及线面垂直的性质可推导出,,从而得到,由此证明平面,从而得到;(2)分别以、、为,,轴,建立空间直角坐标系,利用向量垂直数量积为零列方程求出求出平面与平面的向量法,利用空间向量夹角余弦公式可得结果.详解:(Ⅰ)证明:因为底面为菱形,,且为的中点,所以.又,所以.又底面,所以.于是平面,进而可得.(Ⅱ)解:分别以、、为,,轴,设,则,,,.显然,平面的法向量为,设平面的法向量为,则由解得.所以故平面与平面所成锐二面角的余弦值为.点睛:本题主要考查利用空间向量求二面角,属于中档题.空间向量解答立体几何问题的一般步骤是:(1)观察图形,建立恰当的空间直角坐标系;(2)写出相应点的坐标,求出相应直线的方向向量;(3)设出相应平面的法向量,利用两直线垂直数量积为零列出方程组求出法向量;(4)将空间位置关系转化为向量关系;(5)根据定

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

最新文档

评论

0/150

提交评论