版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省佛山一中,石门中学,顺德一中,国华纪中2024届数学高二第二学期期末联考试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列四个图各反映了两个变量的某种关系,其中可以看作具有较强线性相关关系的是()A.①③ B.①④ C.②③ D.①②2.设曲线在点处的切线与直线垂直,则()A. B. C.-2 D.23.阅读如图所示的程序框图,运行相应的程序,若输入的值为1,则输出的值为()A. B.2 C.0 D.无法判断4.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A. B.C. D.5.为了解某高校高中学生的数学运算能力,从编号为0001,0002,…,2000的2000名学生中采用系统抽样的方法抽取一个容量为50的样本,并把样本编号从小到大排列,已知抽取的第一个样本编号为0003,则最后一个样本编号是()A.0047 B.1663 C.1960 D.19636.若函数y=a|x|(a>0,且a≠1)的值域为{y|0<y≤1},则函数y=loga|x|的图象大致是()A. B. C. D.7.若函数至少存在一个零点,则的取值范围为()A. B. C. D.8.“”是“函数存在零点”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分又不必要条件9.()A.+2 B.+4 C.+2 D.+410.已知,是两条不同直线,,是两个不同平面,则下列命题正确的是()(A)若,垂直于同一平面,则与平行(B)若,平行于同一平面,则与平行(C)若,不平行,则在内不存在与平行的直线(D)若,不平行,则与不可能垂直于同一平面11.在中,,,,则的面积为()A.15 B. C.40 D.12.如图1是把二进制数化为十制数的一个程序框图,则判断框内应填入的条件是()A.B.C.D.否否开始是二、填空题:本题共4小题,每小题5分,共20分。13.的展开式中,若的奇数次幂的项的系数之和为32,则________.14.棱长为的正四面体的高为__________.15.已知直线上总存在点,使得过点作的圆:的两条切线互相垂直,则实数的取值范围是______.16.条件,条件,若是的充分不必要条件,则实数的取值范围是______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)椭圆经过点,对称轴为坐标轴,且点为其右焦点,求椭圆的标准方程.18.(12分)已知.(1)求的值;(2)当时,求的最大值.19.(12分)如图,在矩形ABC中,,,E在线段AD上,,现沿BE将ABE折起,使A至位置,F在线段上,且.(1)求证:平面;(2)若在平面BCDE上的射影O在直线BC上,求直线与平面所成角的正弦值.20.(12分)某地为了调查市民对“一带一路”倡议的了解程度,随机选取了100名年龄在20岁至60岁的市民进行问卷调查,并通过问卷的分数把市民划分为了解“一带一路”倡议与不了解“一带一路”倡议两类.得到下表:年龄20,3030,4040,5050,60调查人数/名30302515了解“一带一路”倡议/名1228155(I)完成下面的2×2列联表,并判断是否有90%的把握认为以40岁为分界点对“一带一路”倡议的了解有差异(结果精确到0.001);年龄低于40岁的人数年龄不低于40岁的人数合计了解不了解合计(Ⅱ)以频率估计概率,若在该地选出4名市民(年龄在20岁至60岁),记4名市民中了解“一带一路”倡议的人数为X,求随机变量X的分布列,数学期望和方差.附:P0.1500.1000.0500.0250.010k2.0722.7063.8415.0246.635K2=n21.(12分)若对任意实数都有函数的图象与直线相切,则称函数为“恒切函数”,设函数,其中.(1)讨论函数的单调性;(2)已知函数为“恒切函数”,①求实数的取值范围;②当取最大值时,若函数也为“恒切函数”,求证:.22.(10分)在班级活动中,4名男生和3名女生站成一排表演节目.(Ⅰ)3名女生相邻,有多少种不同的站法?(Ⅱ)女生甲不能站在最左端,有多少种不同的站法?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
两个变量的散点图,若样本点成带状分布,则两个变量具有线性相关关系,∴两个变量具有线性相关关系的图是①和④,故选B.考点:变量间的相关关系2、A【解题分析】
根据函数的求导运算得到导函数,根据题干所给的垂直关系,得到方程,进而求解.【题目详解】由题意得,,∵在点处的切线与直线垂直,∴,解得,故选:A.【题目点拨】这个题目考查了函数的求导法则,涉及到导数的几何意义的应用,属于基础题.3、B【解题分析】
由条件结构,输入的x值小于0,执行y=﹣x,输出y,等于0,执行y=0,输出y,大于0,执行y=1x,输出y,由x=1>0,执行y=1x得解.【题目详解】因为输入的x值为1大于0,所以执行y=1x=1,输出1.故选:B.【题目点拨】本题考查了程序框图中的条件结构,条件结构的特点是,算法的流程根据条件是否成立有不同的流向,算法不循环执行.4、B【解题分析】
本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解.【题目详解】设其中做过测试的3只兔子为,剩余的2只为,则从这5只中任取3只的所有取法有,共10种.其中恰有2只做过测试的取法有共6种,所以恰有2只做过测试的概率为,选B.【题目点拨】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.5、D【解题分析】,故最后一个样本编号为,故选D.6、A【解题分析】由函数y=a|x|(a>0,且a≠1)的值域为{y|0<y≤1},得0<a<1.y=loga|x|在上为单调递减,排除B,C,D又因为y=loga|x|为偶函数,函数图象关于y轴对称,故A正确.故选A.7、A【解题分析】
将条件转化为有解,然后利用导数求出右边函数的值域即可.【题目详解】因为函数至少存在一个零点所以有解即有解令,则因为,且由图象可知,所以所以在上单调递减,令得当时,单调递增当时,单调递减所以且当时所以的取值范围为函数的值域,即故选:A【题目点拨】1.本题主要考查函数与方程、导数与函数的单调性及简单复合函数的导数,属于中档题.2.若方程有根,则的范围即为函数的值域8、A【解题分析】显然由于,所以当m<0时,函数f(x)=m+log2x(x≥1)存在零点;反之不成立,因为当m=0时,函数f(x)也存在零点,其零点为1,故应选A.9、A【解题分析】
根据题意,先利用定积分性质可得,,然后利用微积分基本定理计算,利用定积分的几何意义计算,即可求出答案。【题目详解】因为,,,所以,故选A。【题目点拨】本题主要考查利用定积分的性质、几何意义以及微积分基本定理计算定积分。10、D【解题分析】由,若,垂直于同一平面,则,可以相交、平行,故不正确;由,若,平行于同一平面,则,可以平行、重合、相交、异面,故不正确;由,若,不平行,但平面内会存在平行于的直线,如平面中平行于,交线的直线;由项,其逆否命题为“若与垂直于同一平面,则,平行”是真命题,故项正确.所以选D.考点:1.直线、平面的垂直、平行判定定理以及性质定理的应用.11、B【解题分析】
先利用余弦定理求得,然后利用三角形面积公式求得三角形的面积.【题目详解】由余弦定理得,解得,由三角形面积得,故选B.【题目点拨】本小题主要考查余弦定理解三角形,考查三角形的面积公式,属于基础题.12、C【解题分析】略二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】试题分析:由已知得,故的展开式中x的奇数次幂项分别为,,,,,其系数之和为,解得.考点:二项式定理.14、【解题分析】
利用正弦定理计算出正四面体底面三角形的外接圆半径,再利用公式可得出正四面体的高.【题目详解】设正四面体底面三角形的外接圆的半径为,由正弦定理得,,因此,正四面体的高为,故答案为.【题目点拨】本题考查正四面体高的计算,解题时要充分分析几何体的结构,结合勾股定理进行计算,考查空间想象能力,属于中等题.15、【解题分析】分析:若直线l上总存在点M使得过点M的两条切线互相垂直,只需圆心(﹣1,2)到直线l的距离,即可求出实数m的取值范围.详解:如图,设切点分别为A,B.连接AC,BC,MC,由∠AMB=∠MAC=∠MBC=90°及MA=MB知,四边形MACB为正方形,故,若直线l上总存在点M使得过点M的两条切线互相垂直,只需圆心(﹣1,2)到直线l的距离,即m2﹣8m﹣20≤0,∴﹣2≤m≤10,故答案为:﹣2≤m≤10.点睛:(1)本题主要考查直线和圆的位置关系,意在考查学生对这些知识的掌握水平和分析推理能力数形结合的思想方法.(2)解答本题的关键是分析出.16、【解题分析】
解:是的充分而不必要条件,,等价于,的解为,或,,故答案为:.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、【解题分析】
由题可先利用定义求椭圆的长轴长,再求椭圆的标准方程即可.【题目详解】由题,设椭圆方程,则由椭圆的定义有,故,又,所以.所以.故答案为:【题目点拨】本题主要考查利用定义求椭圆的标准方程的方法,属于基础题型.18、(1)(2)【解题分析】分析:(1)分别令,,两式相加可得的值;设最大,则有,即解之即可.详解:(1)令可得,,令可得,,两式相加可得:,所以;(2)因为,所以,设最大,则有,即,解得,因为,所以,此时的最大值为.点睛:本题主要考查二项式定理的应用,属于中档题.19、(1)见解析(2)【解题分析】
(1)取,再根据平几知识证,最后根据线面平行判定定理以及面面平行判定定理及其性质得结果;(2)建立空间直角坐标系,利用向量数量积求出平面法向量,根据向量夹角公式求夹角,最后根据向量夹角与线面角关系得结果.【题目详解】(1)取,因为,所以平面,平面,所以平面,因为四边形为平行四边形,即平面,平面,所以平面,因为平面,所以平面平面,因为平面,所以平面(2)以O为坐标原点,建立如图所示空间直角坐标系,设,因为设平面法向量为,则即即令因为,所以因此直线与平面所成角的正弦值为【题目点拨】本题考查线面平行判定定理以及利用空间向量求线面角,考查综合分析论证与求解能力,属中档题.20、(Ⅰ)填表见解析,有90%的把握认为以40岁为分界点“一带一路”倡议的了解有差异(Ⅱ)见解析【解题分析】
(1)由表格读取信息,年龄低于40岁的人数共60人,年龄不低于40岁的人数,代入K2(2)在总体未知的市民中选取4人,每位市民被选中的概率由频率估计概率算出35,所以随机变量X服从二项分布【题目详解】解:(Ⅰ)根据已知数据得到如下列联表年龄低于40岁的人数年龄不低于40岁的人数合计了解402060不了解202040合计6040100K故有90%的把握认为以40岁为分界点“一带一路”倡议的了解有差异.(Ⅱ)由题意,得市民了解“一带一路”倡议的概率为60100=3PX=0=C40PX=3=C则X的分布列为X01234P169621621681EX=4×3【题目点拨】本题要注意选取4人是在总体中选,而不是在100人的样本中选,如果看成是在样本中100人选4人,很容易误用超几何分布模型求解.21、(1)见解析;(2)【解题分析】分析:(1)求出,分两种情况讨论的范围,在定义域内,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间;(2)①设切点为,求出,设,根据函数的单调性求出故实数的取值范围为;②当取最大值时,,,,,,因为函数也为“恒切函数”,故存在,使得,,由得,,设,,根据函数的单调性证明即可.详解:(1).当时,恒成立,函数在上单调递减;当时,得,由得,由得,得函数在上单调递减,在上递增.(2)①若函数为“恒切函数”,则函数的图象与直线相切,设切点为,则且,即,.因为函数为“恒切函数”,所以存在,使得,,即,得,,设.则,,得,得,故在上单调递增,在上单调递减,从而故实数的取值范围为.②当取最大值时,,,,,,因为函数也为“恒切函数”,故存在,使得,,由得,,设,则,得,得,故在上单调递减,在上单调递增,1.在单调递增区间上,,故,由,得;2.在单调递增区间上,,,又的图象在上不间断,故在区间上存在唯一的,使得,故.此时由,得,函数在上递增,,,故.综上所述,.点睛:本题是以导数的运用为背景的函数综合题,主要考查了函数思想,化归思想,抽象概括能力,综合分析问题和解决问题的能力,属于较难题,近来高考在逐年加大对导数问题的考查力度,不仅题型在变化,而且问题的难度、深度与广度也在不断加大,本部分的要求一定有三个层次:第一层次主要考查求导公式,求导法则与导数的几何意义;第二层次是导数的简单应用,包括求函数
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 手外伤护理中的沟通技巧
- 个案护理中的伤口护理与造口护理
- 2025年办公吊顶改造合同协议
- 城市微气候调控研究
- 2025年人脸识别智能门锁行业媒体宣传方案
- 城镇化与生态环境耦合机制
- 一轮复习:第2课 诸侯纷争与变法运动 课件
- 基于模型的重建
- 药学专业知识试题及答案
- 2026 年中职酒店管理(酒店礼仪)试题及答案
- 2025云南省人民检察院招聘22人笔试考试备考题库及答案解析
- 银行行业公司银行客户经理岗位招聘考试试卷及答案
- 2026年安全生产管理培训课件与事故预防与应急处理方案
- 2026天津市静海区北师大实验学校合同制教师招聘81人(仅限应届毕业生)考试笔试备考题库及答案解析
- 2025陕西陕煤澄合矿业有限公司招聘570人参考笔试题库及答案解析
- 2025年仓储服务外包合同协议
- 2025辽宁沈阳金融商贸经济技术开发区管理委员会运营公司招聘60人考试历年真题汇编带答案解析
- 2025年刑法学考试试题及答案
- 广东省汕头市金平区2024-2025学年七年级上学期期末地理试题
- 2025年二手车交易市场发展可行性研究报告及总结分析
- 北京市交通运输综合执法总队轨道交通运营安全专职督查员招聘10人考试参考题库附答案解析
评论
0/150
提交评论