陕西省西安市高新沣东中学黄冈中学2024届数学高二第二学期期末教学质量检测模拟试题含解析_第1页
陕西省西安市高新沣东中学黄冈中学2024届数学高二第二学期期末教学质量检测模拟试题含解析_第2页
陕西省西安市高新沣东中学黄冈中学2024届数学高二第二学期期末教学质量检测模拟试题含解析_第3页
陕西省西安市高新沣东中学黄冈中学2024届数学高二第二学期期末教学质量检测模拟试题含解析_第4页
陕西省西安市高新沣东中学黄冈中学2024届数学高二第二学期期末教学质量检测模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

陕西省西安市高新沣东中学黄冈中学2024届数学高二第二学期期末教学质量检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在区间上随机取一个数,使直线与圆相交的概率为()A. B. C. D.2.下图是一个几何体的三视图,则该几何体的体积为()A. B. C. D.3.对变量x,y有观测数据(xi,yiA.变量x与y正相关,u与v正相关B.变量x与y正相关,u与v负相关C.变量x与y负相关,u与v正相关D.变量x与y负相关,u与v负相关4.函数的零点个数为()A.0 B.1 C.2 D.35.在极坐标系中,曲线的极坐标方程为,曲线的极坐标方程为,若曲线与交于、两点,则等于()A. B. C. D.6.《九章算术》中有如下问题:“今有勾五步,股一十二步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为5步和12步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A. B. C. D.7.用数学归纳法证明时,由时的假设到证明时,等式左边应添加的式子是()A. B.C. D.8.已知直线l、直线m和平面,它们的位置关系同时满足以下三个条件:①;②;③l与m是互相垂直的异面直线若P是平面上的动点,且到l、m的距离相等,则点P的轨迹为()A.直线 B.椭圆 C.抛物线 D.双曲线9.将4名实习教师分配到高一年级三个班实习,每班至少安排一名教师,则不同的分配方案有()种A.12 B.36 C.72 D.10810.王老师在用几何画板同时画出指数函数()与其反函数的图象,当改变的取值时,发现两函数图象时而无交点,并且在某处只有一个交点,则通过所学的导数知识,我们可以求出当函数只有一个交点时,的值为()A. B. C. D.11.袋中有大小和形状都相同的个白球、个黑球,现从袋中每次取一个球,不放回地抽取两次,则在第一次取到白球的条件下,第二次取到白球的概率是()A. B. C. D.12.定积分的值为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某一部件由四个电子元件按如图方式连接而成,元件1或元件2正常工作,且元件3或元件4正常工作,则部件正常工作.设四个电子元件的使用寿命(单位:小时)均服从正态分布,且各个元件能否正常工作相互独立,那么该部件的使用寿命超过1000小时的概率为__________.14.已知直线l过点(1,0)且垂直于𝑥轴,若l被抛物线截得的线段长为4,则抛物线的焦点坐标为_________.15.已知球的半径为,为球面上两点,若之间的球面距离是,则这两点间的距离等于_________16.在的展开式中,含项的系数是_______________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)现计划用两张铁丝网在一片空地上围成一个梯形养鸡场,,,已知、两段是由长为的铁丝网折成,、两段是由长为的铁丝网折成.设上底的长为,所围成的梯形面积为.(1)求S关于x的函数解析式,并求x的取值范围;(2)当x为何值时,养鸡场的面积最大?最大面积为多少?18.(12分)某公司的一次招聘中,应聘者都要经过三个独立项目,,的测试,如果通过两个或三个项目的测试即可被录用.若甲、乙、丙三人通过,,每个项目测试的概率都是.(1)求甲恰好通过两个项目测试的概率;(2)设甲、乙、丙三人中被录用的人数为,求的概率分布和数学期望.19.(12分)如图,在四棱锥中,四边形是直角梯形,,,,为等边三角形.(1)证明:;(2)求二面角的余弦值.20.(12分)如图所示,四棱锥中,底面,,为中点.(1)试在上确定一点,使得平面;(2)点在满足(1)的条件下,求直线与平面所成角的正弦值.21.(12分)若集合具有以下性质:(1)且;(2)若,,则,且当时,,则称集合为“闭集”.(1)试判断集合是否为“闭集”,请说明理由;(2)设集合是“闭集”,求证:若,,则;(3)若集合是一个“闭集”,试判断命题“若,,则”的真假,并说明理由.22.(10分)在四棱锥中,平面平面,,四边形是边长为的菱形,,是的中点.(1)求证:平面;(2)求平面与平面所成的锐二面角的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

先求出直线和圆相交时的取值范围,然后根据线型的几何概型概率公式求解即可.【题目详解】由题意得,圆的圆心为,半径为,直线方程即为,所以圆心到直线的距离,又直线与圆相交,所以,解得.所以在区间上随机取一个数,使直线与圆相交的概率为.故选C.【题目点拨】本题以直线和圆的位置关系为载体考查几何概型,解题的关键是由直线和圆相交求出参数的取值范围,然后根据公式求解,考查转化和计算能力,属于基础题.2、B【解题分析】

根据三视图得到原图是,边长为2的正方体,挖掉八分之一的球,以正方体其中一个顶点为球的球心。【题目详解】根据三视图得到原图是,边长为2的正方体,挖掉八分之一的球,以正方体其中一个顶点为球的球心,故剩余的体积为:故答案为:B.【题目点拨】思考三视图还原空间几何体首先应深刻理解三视图之间的关系,遵循“长对正,高平齐,宽相等”的基本原则,其内涵为正视图的高是几何体的高,长是几何体的长;俯视图的长是几何体的长,宽是几何体的宽;侧视图的高是几何体的高,宽是几何体的宽.由三视图画出直观图的步骤和思考方法:1、首先看俯视图,根据俯视图画出几何体地面的直观图;2、观察正视图和侧视图找到几何体前、后、左、右的高度;3、画出整体,然后再根据三视图进行调整.3、C【解题分析】试题分析:由散点图1可知,点从左上方到右下方分布,故变量x与y负相关;由散点图2可知,点从左下方到右上方分布,故变量u与v正相关,故选C考点:本题考查了散点图的运用点评:熟练运用随机变量的正负相关的概念是解决此类问题的关键,属基础题4、C【解题分析】,如图,由图可知,两个图象有2个交点,所以原函数的零点个数为2个,故选C.5、B【解题分析】

由题意可知曲线与交于原点和另外一点,设点为原点,点的极坐标为,联立两曲线的极坐标方程,解出的值,可得出,即可得出的值.【题目详解】易知,曲线与均过原点,设点为原点,点的极坐标为,联立曲线与的坐标方程,解得,因此,,故选:B.【题目点拨】本题考查两圆的相交弦长的计算,常规方法就是计算出两圆的相交弦方程,计算出弦心距,利用勾股定理进行计算,也可以联立极坐标方程,计算出两极径的值,利用两极径的差来计算,考查方程思想的应用,属于中等题.6、C【解题分析】

本题首先可以根据直角三角形的三边长求出三角形的内切圆半径,然后分别计算出内切圆和三角形的面积,最后通过几何概型的概率计算公式即可得出答案.【题目详解】如图所示,直角三角形的斜边长为,设内切圆的半径为,则,解得.所以内切圆的面积为,所以豆子落在内切圆外部的概率,故选C.【题目点拨】本题主要考查“面积型”的几何概型,属于中档题.解决几何概型问题常见类型有:长度型、角度型、面积型、体积型,求与面积有关的几何概型问题关鍵是计算问题的总面积以及事件的面积;几何概型问题还有以下几点容易造成失分,在备考时要高度关注:(1)不能正确判断事件是古典概型还是几何概型导致错误;(2)基本事件对应的区域测度把握不准导致错误;(3)利用几何概型的概率公式时,忽视验证事件是否等可能性导致错误.7、B【解题分析】因为当时,等式的左边是,所以当时,等式的左边是,多增加了,应选答案B.点睛:解答本题的关键是搞清楚当时,等式的左边的结构形式,当时,等式的左边的结构形式是,最终确定添加的项是什么,使得问题获解.8、D【解题分析】

作出直线m在平面α内的射影直线n,假设l与n垂直,建立坐标系,求出P点轨迹即可得出答案.【题目详解】解:设直线m在平面α的射影为直线n,则l与n相交,不妨设l与n垂直,设直线m与平面α的距离为d,在平面α内,以l,n为x轴,y轴建立平面坐标系,则P到直线l的距离为|y|,P到直线n的距离为|x|,∴P到直线m的距离为,∴|y|,即y2﹣x2=d2,∴P点轨迹为双曲线.故选:D.【题目点拨】本题考查空间线面位置关系、轨迹方程,考查点到直线的距离公式等基础知识,考查运算求解能力,考查函数与方程思想,是中档题.9、B【解题分析】试题分析:第一步从名实习教师中选出名组成一个复合元素,共有种,第二步把个元素(包含一个复合元素)安排到三个班实习有,根据分步计数原理不同的分配方案有种,故选B.考点:计数原理的应用.10、B【解题分析】

当指数函数与对数函数只有一个公共点时,则在该点的公切线的斜率相等,列出关于的方程.【题目详解】设切点为,则,解得:故选B.【题目点拨】本题考查导数的运算及导数的几何意义,考查数形结合思想的应用,要注意根据指数函数与对数函数图象的凹凸性,得到在其公共点处公切线的斜率相等.11、D【解题分析】

分别计算第一次取到白球的概率和第一次取到白球且第二次取到白球的概率,根据条件概率公式求得结果.【题目详解】记“第一次取到白球”为事件,则记“第一次取到白球且第二次取到白球”为事件,则在第一次取到白球的条件下,第二次取到白球的概率:本题正确选项:【题目点拨】本题考查条件概率的求解问题,易错点是忽略抽取方式为不放回的抽取,错误的认为每次抽到白球均为等可能事件.12、C【解题分析】试题分析:=.故选C.考点:1.微积分基本定理;2.定积分的计算.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:先求出四个电子元件的使用寿命超过1000小时的概率都为,再设A={元件1或元件2正常工作},B={元件3或元件4正常工作},再求P(A),P(B),再求P(AB)得解.详解:由于四个电子元件的使用寿命(单位:小时)均服从正态分布,所以四个电子元件的使用寿命超过1000小时的概率都为设A={元件1或元件2正常工作},B={元件3或元件4正常工作},所以所以该部件的使用寿命超过1000小时的概率为.故答案为:.点睛:(1)本题主要考查正态分布曲线,考查独立事件同时发生的概率,意在考查学生对这些知识的掌握水平和分析推理能力.(2)一般地,如果事件相互独立,那么这个事件同时发生的概率,等于每个事件发生的概率的积,即.14、【解题分析】分析:根据题干描述画出相应图形,分析可得抛物线经过点,将点坐标代入可求参数的值,进而可求焦点坐标.详细:由题意可得,点在抛物线上,将代入中,解得:,,由抛物线方程可得:,焦点坐标为.点睛:此题考查抛物线的相关知识,属于易得分题,关键在于能够结合抛物线的对称性质,得到抛物线上点的坐标,再者熟练准确记忆抛物线的焦点坐标公式也是保证本题能够得分的关键.15、【解题分析】

根据球面距离计算出的大小,根据的大小即可计算出之间的距离.【题目详解】因为,,所以为等边三角形,所以.故答案为:.【题目点拨】本题考查根据球面距离计算球面上两点间的距离,难度较易.计算球面上两点间的距离,可通过求解两点与球心的夹角,根据角度直接写出或者利用余弦定理计算出两点间的距离.16、84【解题分析】

通过求出各项二项展开式中项的系数,利用组合数的性质求出系数和即可得结果.【题目详解】的展开式中,含项的系数为:,故答案是:84.【题目点拨】该题考查的是有关二项式对应项的系数和的问题,涉及到的知识点有指定项的二项式系数,组合数公式,属于简单题目.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,(2)当x为时,养鸡场的面积最大,最大为.【解题分析】

(1)由已知条件的该梯形为等腰梯形,作出高,用含的代数式表示出上、下底和高,从而表示出面积;(2)利用导数最值求出最大值【题目详解】解:(1)由题意,,,过A点作,垂足为E,则,梯形的高由,解得.综上,,(2)设,,令,得(,舍去)时,,单调递增,时,,单调递减.∴当时,的最大值是1080000,此时.∴当为时,养鸡场的面积最大,最大为.【题目点拨】本题主要考察用函数模型解决实际问题,利用导数研究函数的单调性,属于基础题.18、(1);(2)答案见解析.【解题分析】分析:(1)利用二项分布计算甲恰好有2次发生的概率;(2)由每人被录用的概率值,求出随机变量X的概率分布,计算数学期望.详解:(1)甲恰好通过两个项目测试的概率为;(2)因为每人可被录用的概率为,所以,,,;故随机变量X的概率分布表为:X0123P所以,X的数学期望为.点睛:解离散型随机变量的期望应用问题的方法(1)求离散型随机变量的期望关键是确定随机变量的所有可能值,写出随机变量的分布列,正确运用期望公式进行计算.(2)要注意观察随机变量的概率分布特征,若属二项分布的,可用二项分布的期望公式计算,则更为简单.19、(1)略;(2)【解题分析】

(1)推导出,从而得到平面,由此可证得;(2)推导出,以B为原点为轴,为轴,为轴,建立空间直角坐标系,求得平面的法向量,利用向量的夹角公式,即可求解.【题目详解】(1)证明:在四棱锥中,四边形是直角梯形,,,,为等边三角形,所以,所以,,所以,又由,所以平面,又因为平面,所以;(2)因为,所以,以为原点为轴,为轴,为轴,建立空间直角坐标系,则,所以,设平面的法向量为,则,取,得,设平面的法向量为,则,取,得,由图形可知二面角的平面角是钝角,设二面角的平面角为,所以,即二面角的余弦值为.【题目点拨】本题考查了线面平行的判定与证明,以及空间角的求解问题,意在考查学生的空间想象能力和逻辑推理能力,解答中熟记线面位置关系的判定定理和性质定理,通过严密推理是线面位置关系判定的关键,同时对于立体几何中角的计算问题,往往可以利用空间向量法,通过求解平面的法向量,利用向量的夹角公式求解.20、(1).(2).【解题分析】【试题分析】(1)先确定点的位置为等分点,再运用线面平行的判定定理进行证明平面;(2)借助(1)的结论,及线面角的定义构造三角形找出直线与平面所成角,再通过解直角三角形求出其正弦值:解:(1)证明:平面PAD.过M作交PA于E,连接DE.因为,所以,又,故,且,即为平行四边形,则,又平面PAD,平面PAD,平面;(2)解:因为,所以直线MN与平面PAB所成角等于直线DE与平面PAB所成角

底面A

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论