版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
河北省廊坊市名校2024届数学高二第二学期期末教学质量检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的部分图像如图所示,其,把函数的图像上所有点的横坐标伸长到原来的2倍,纵坐标不变,再把所得曲线向左平移2个单位长度,得到函数的图像,则的解析式为()A. B.C. D.2.要得到函数的图象,只需将函数的图象()A.向左平移个单位 B.向右平移个单位C.向左平移个单位 D.向右平移个单位3.设等比数列的前n项和为,公比,则()A. B. C. D.4.已知与之间的一组数据:01231357则与的线性回归方程必过A. B. C. D.5.已知离散型随机变量ξ~B(20,0.9),若随机变量η=5ξ,则η的数学期望EηA.100 B.90 C.18 D.4.56.近年来随着我国在教育科研上的投入不断加大,科学技术得到迅猛发展,国内企业的国际竞争力得到大幅提升.某品牌公司一直默默拓展海外市场,在海外设了多个分支机构,现需要国内公司外派大量中青年员工.该企业为了解这两个年龄层员工是否愿意被外派工作的态度,按分层抽样的方式从中青年员工中随机调查了位,得到数据如下表:愿意被外派不愿意被外派合计中年员工青年员工合计由并参照附表,得到的正确结论是附表:0.100.010.0012.7066.63510.828A.在犯错误的概率不超过10%的前提下,认为“是否愿意外派与年龄有关”;B.在犯错误的概率不超过10%的前提下,认为“是否愿意外派与年龄无关”;C.有99%以上的把握认为“是否愿意外派与年龄有关”;D.有99%以上的把握认为“是否愿意外派与年龄无关”.7.设,则的值为()A.2 B.0 C. D.18.如果函数的图象如下图,那么导函数的图象可能是()A. B. C. D.9.如图,四个相同的直角三角形与中间的小正方形拼成一个大正方形,已知小正方形的外接圆恰好是大正方形的内切圆,现在大正方形内随机取一点,则此点取自阴影部分的概率为()A. B. C. D.10.甲、乙二人争夺一场围棋比赛的冠军,若比赛为“三局两胜”制,甲在每局比赛中获胜的概率均为,且各局比赛结果相互独立.则在甲获得冠军的情况下,比赛进行了三局的概率为()A. B. C. D.11.用数学归纳法证明“当为正奇数时,能被整除”,第二步归纳假设应该写成()A.假设当时,能被整除B.假设当时,能被整除C.假设当时,能被整除D.假设当时,能被整除12.已知是虚数单位,,则复数的共轭复数为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.设函数.若为奇函数,则曲线在点处的切线方程为___________.14.若,且,则______.15.正项等差数列中的,是函数的极值点,则______.16.若{an}为等差数列,Sn是其前n项的和,且S11=π,则tana6=________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知,椭圆C过点,两个焦点为,,E,F是椭圆C上的两个动点,如果直线AE的斜率与AF的斜率互为相反数,直线EF的斜率为,直线l与椭圆C相切于点A,斜率为.求椭圆C的方程;求的值.18.(12分)为了适应高考改革,某中学推行“创新课堂”教学.高一平行甲班采用“传统教学”的教学方式授课,高一平行乙班采用“创新课堂”的教学方式授课,为了比较教学效果,期中考试后,分别从两个班中各随机抽取20名学生的成绩进行统计分析,结果如表:(记成绩不低于120分者为“成绩优秀”)分数[80,90)[90,100)[100,110)[110,120)[120,130)[130,140)[140,150]甲班频数1145432乙班频数0112664(1)由以上统计数据填写下面的2×2列联表,并判断是否有95%以上的把握认为“成绩优秀与教学方式有关”?甲班乙班总计成绩优秀成绩不优秀总计(2)现从上述样本“成绩不优秀”的学生中,抽取3人进行考核,记“成绩不优秀”的乙班人数为X,求X的分布列和期望.参考公式:,其中.临界值表P()0.1000.0500.0100.0012.7063.8416.63510.82819.(12分)已知函数.(1)当时,解不等式;(2)若存在满足,求实数a的取值范围.20.(12分)如图,在棱长为的正方体中,,,分别是棱、和所在直线上的动点:(1)求的取值范围:(2)若为面内的一点,且,,求的余弦值:(3)若、分别是所在正方形棱的中点,试问在棱上能否找到一点,使平面?若能,试确定点的位置,若不能,请说明理由.21.(12分)已知:(n∈N)的展开式中第五项的系数与第三项的系数的比是10:1.(1)求展开式中各项系数的和;(2)求展开式中含的项.22.(10分)已知函数.(1)当时,求函数的单调区间和极值;(2)若在上是单调函数,求实数的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
根据条件先求出和,结合函数图象变换关系进行求解即可.【题目详解】解:,即,,则,,,即,则,则,即,得,即,把函的图象上所有点的横坐标伸长到原来的倍,纵坐标不变,得到,再把所得曲线向左平移个单位长度,得到函数的图象,即,故选:.【题目点拨】本题主要考查三角函数图象的应用,根据条件求出和的值以及利用三角函数图象平移变换关系是解决本题的关键,属于中档题.2、B【解题分析】
=cos2x,=,所以只需将函数的图象向右平移个单位可得到故选B3、D【解题分析】
由等比数列的通项公式与前项和公式分别表示出与,化简即可得到的值【题目详解】因为等比数列的公比,则,故选D.【题目点拨】本题考查等比数列的通项公式与前项和公式,属于基础题。4、B【解题分析】
先求出x的平均值,y的平均值,回归直线方程一定过样本的中心点(,),代入可得答案.【题目详解】解:回归直线方程一定过样本的中心点(,),,∴样本中心点是(1.5,4),则y与x的线性回归方程y=bx+a必过点(1.5,4),故选B.【题目点拨】本题考查平均值的计算方法,回归直线的性质:回归直线方程一定过样本的中心点(,).5、B【解题分析】
先利用二项分布的期望公式求得Eξ=20×0.9=18,由离散型随机变量的数学期望的性质,可求出随机变量η=5ξ的数学期望.【题目详解】由题设离散型随机变量ξ~B(20,0.9∴Eξ=20×0.9=18,∵η=5ξ,∴Eη=E(5ξ)=5Eξ=5×18=90.故选B.【题目点拨】“求期望”,一般利用离散型随机变量的数学期望的定义求期望.对于某些实际问题中的随机变量,如果能够断定它服从某常见的典型分布(如二项分布X~B(n,p)),则此随机变量的期望可直接利用这种典型分布的期望公式(6、A【解题分析】
由公式计算出的值,与临界值进行比较,即可得到答案。【题目详解】由题可得:故在犯错误的概率不超过10%的前提下,认为“是否愿意外派与年龄有关”,有90%以上的把握认为“是否愿意外派与年龄有关,所以答案选A;故答案选A【题目点拨】本题主要考查独立性检验,解题的关键是正确计算出的值,属于基础题。7、C【解题分析】
分别令和即可求得结果.【题目详解】令,可得:令,可得:故选【题目点拨】本题考查二项展开式系数和的相关计算,关键是采用赋值的方式构造出所求式子的形式.8、A【解题分析】试题分析:的单调变化情况为先增后减、再增再减因此的符号变化情况为大于零、小于零、大于零、小于零,四个选项只有A符合,故选A.考点:1、函数的单调性与导数的关系;2、函数图象的应用.【方法点晴】本题通过对多个图象的选择考查函数的解析式、定义域、值域、单调性,导数的应用以及数学化归思想,属于难题.这类题型也是近年高考常见的命题方向,该题型的特点是综合性较强较强、考查知识点较多,但是并不是无路可循.解答这类题型可以从多方面入手,根据函数的定义域、值域、单调性、奇偶性、特殊点以及时函数图象的变化趋势,利用排除法,将不合题意选项一一排除.9、B【解题分析】分析:设大正方形的边长为1,其内切圆的直径为1,则小正方形的边长为,从而阴影部分的面积为,由此利用几何概型能求出在大正方形内随机取一点,则此点取自阴影部分的概率.详解:设大正方形的边长为1,其内切圆的直径为1,则小正方形的边长为,所以大正方形的面积为1,圆的面积为,小正方形的面积为,则阴影部分的面积为,所以在大正方形内随机取一点,则此点取自阴影部分的概率.点睛:本题主要考查了面积比的几何概型及其概率的计算问题,其中根据题意,准确求解阴影部分的面积是解答本题的关键,着重考查了推理与运算能力,以及函数与方程思想的应用,属于基础题.10、A【解题分析】
记事件甲获得冠军,事件比赛进行三局,计算出事件的概率和事件的概率,然后由条件概率公式可得所求事件的概率为.【题目详解】记事件甲获得冠军,事件比赛进行三局,事件甲获得冠军,且比赛进行了三局,则第三局甲胜,前三局甲胜了两局,由独立事件的概率乘法公式得,对于事件,甲获得冠军,包含两种情况:前两局甲胜和事件,,,故选A.【题目点拨】本题考查利用条件概率公式计算事件的概率,解题时要理解所求事件的之间的关系,确定两事件之间的相对关系,并利用条件概率公式进行计算,考查运算求解能力,属于中等题.11、D【解题分析】注意n为正奇数,观察第一步取到1,即可推出第二步的假设.解:根据数学归纳法的证明步骤,注意n为奇数,所以第二步归纳假设应写成:假设n=2k-1(k∈N*)正确,再推n=2k+1正确;故选D.本题是基础题,不仅注意第二步的假设,还要使n=2k-1能取到1,是解好本题的关键.12、A【解题分析】
先由复数的除法,化简z,再由共轭复数的概念,即可得出结果.【题目详解】因为,所以.故选A【题目点拨】本题主要考查复数的运算,以共轭复数的概念,熟记运算法则与概念即可,属于基础题型.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
首先根据奇函数的定义,得到,即,从而确定出函数的解析式,之后对函数求导,结合导数的几何意义,求得对应切线的斜率,应用点斜式写出直线的方程,最后整理成一般式,得到结果.【题目详解】因为函数是奇函数,所以,从而得到,即,所以,所以,所以切点坐标是,因为,所以,所以曲线在点处的切线方程为,故答案是.【题目点拨】该题考查的是有关函数图象在某点处的切线问题,涉及到的知识点有奇函数的定义,导数的几何意义,属于简单题目.14、5【解题分析】
由正态分布曲线的对称性可得,正态分布曲线关于直线对称,即可得,再求解即可.【题目详解】解:由,得,又,所以,即,故答案为:5.【题目点拨】本题考查了正态分布曲线的对称性,属基础题.15、4【解题分析】
先对函数求导,得到,根据题意,得到,根据等差数列性质,得到,进而可求出结果.【题目详解】因为,所以,又,是函数的极值点,所以,是方程的两实根,因此,因为数列是正项等差数列,所以,解得,因此.故答案为:.【题目点拨】本题主要考查由函数极值点求参数,以及等差数列的性质,熟记函数极值点的定义,以及等差数列的性质即可,属于常考题型.16、-【解题分析】S11==11a6=π,∴a6=,∴tana6=-三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)0.【解题分析】
可设椭圆C的方程为,由题意可得,由椭圆的定义计算可得,进而得到b,即可得到所求椭圆方程;设直线AE:,代入椭圆方程,运用韦达定理可得E的坐标,由题意可将k换为,可得F的坐标,由直线的斜率公式计算可得直线EF的斜率,设出直线l的方程,联立椭圆方程,运用直线和椭圆相切的条件:判别式为0,可得直线l的斜率,进而得到所求斜率之和.【题目详解】解:由题意可设椭圆C的方程为,且,,即有,,所以椭圆的方程为;设直线AE:,代入椭圆方程可得,可得,即有,,由直线AE的斜率与AF的斜率互为相反数,可将k换为,可得,,则直线EF的斜率为,设直线l的方程为,代入椭圆方程可得:,由直线l与椭圆C相切,可得,化简可得,解得,则.【题目点拨】本题主要考查了椭圆的简单性质及椭圆的定义,考查两点斜率公式,还考查了韦达定理及直线与椭圆相切知识,考查化简整理的运算能力和推理能力,属于难题.18、(1)有以上的把握认为“成绩优秀与教学方式有关”.(2)见解析.【解题分析】
(1)根据以上统计数据填写列联表,根据列联表计算的观测值k,对照临界值得出结论;(2)由题意知的可能取值,计算对应的概率值,写出的分布列,求期望即可.【题目详解】(1)补充的列联表如下表:甲班乙班总计成绩优秀成绩不优秀总计根据列联表中的数据,得的观测值为,所以有以上的把握认为“成绩优秀与教学方式有关”.(2)的可能取值为,,,,,,,,所以的分布列为【题目点拨】本题考查了独立性检验的问题和离散型随机变量的分布列与期望问题,是中档题.19、(1)或;(2)【解题分析】
(1)以为分界点分段讨论解不等式。(2)原不等式可化为,由绝对值不等式求得的最小值小于3,解得参数.【题目详解】当时,,当时,不等式等价于,解得,即;当时,不等式等价于,解得,即;当时,不等式等价于,解得,即.综上所述,原不等式的解集为或.由,即,得,又,,即,解得.所以。【题目点拨】对于绝对值不等式的求解,我们常用分段讨论的方法,也就是按绝对值的零点把数轴上的实数分成多段进行分段讨论,要注意分段时不重不漏,分段结果是按先交后并做运算。20、(1);(2);(3)点M为的中点,理由见解析【解题分析】
(1)设,求出,利用余弦定理
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 大班户外听评课记录内容
- 《旅游景区服务管理》课件
- 河北省邯郸市复兴区第三中学2024-2025学年七年级上学期12月月考道德与法治试题(含答案)
- 2024-2025学年度高二语文六校联考期中考试卷
- 河南省新乡市封丘县2024-2025学年高一上学期11月期中考试 历史(含答案)
- DB54T 0423-2024 公共数据 数据分类分级规范
- 《财政支出途径》课件
- 《全身解剖对应》课件
- 历史的教育价值模板
- 24年国开4238药物化学
- 施工单位资料检查内容
- 高血压病例优秀PPT课件
- 放射培训考试习题及答案
- 灯具安装施工组织设计(完整版)
- 马克思主义基本原理第一章第一节
- AHP层次分析法-EXCEL表格自动计算
- 计算机基础认识键盘键盘教程 (课堂PPT)
- SOP作业指导书模板
- 威信旅行社团体报价单
- 企业绩效考核大全设计包装人员绩效考核
- TPRI设计常用模块说明
评论
0/150
提交评论