贵州省六盘水市六枝特区七中2024届高二数学第二学期期末学业质量监测模拟试题含解析_第1页
贵州省六盘水市六枝特区七中2024届高二数学第二学期期末学业质量监测模拟试题含解析_第2页
贵州省六盘水市六枝特区七中2024届高二数学第二学期期末学业质量监测模拟试题含解析_第3页
贵州省六盘水市六枝特区七中2024届高二数学第二学期期末学业质量监测模拟试题含解析_第4页
贵州省六盘水市六枝特区七中2024届高二数学第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

贵州省六盘水市六枝特区七中2024届高二数学第二学期期末学业质量监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.现有5人参加抽奖活动,每人依次从装有5张奖票(其中3张为中奖票)的箱子中不放回地随机抽取一张,直到3张中奖票都被抽出时活动结束,则活动恰好在第4人抽完后结束的概率为()A. B. C. D.2.函数(,)的部分图象如图所示,则的值分别是()A. B. C. D.3.已知函数的图像为曲线C,若曲线C存在与直线垂直的切线,则实数m的取值范围是A. B. C. D.4.已知函数f(x)是定义在R上的增函数,f(x)+2>f'(x),f(0)=1,则不等式ln[f(x)+2]>ln3+x的解集为()A.(一∞,0) B.(0,+∞) C.(一∞,1) D.(1,+∞)5.若集合,,则等于()A. B. C. D.6.已知集合,,现从这两个集合中各取出一个元素组成一个新的双元素组合,则可以组成这样的新集合的个数为()A. B. C. D.7.如图是一个算法的程序框图,当输入的x的值为7时,输出的y值恰好是,则“?”处应填的关系式可能是()A. B. C. D.8.已知函数是幂函数,且其图象与两坐标轴都没有交点,则实数A. B.2 C.3 D.2或9.观察下列等式,13+23=32,13+23+33=62,13+23+33+43=102,根据上述规律,13+23+33+43+53+63=()A.192 B.202 C.212 D.22210.已知双曲线的实轴长为16,左焦点分别为,是双曲线的一条渐近线上的点,且,为坐标原点,若,则双曲线的离心率为()A. B. C. D.11.将函数的图象向右平移个单位长度得到图象,则函数的解析式是()A. B.C. D.12.在如图所示的正方形中随机投掷10000个点,则落入阴影部分(曲线C为正态分布N(-1,1)的密度曲线)的点的个数的估计值为()附:若X∼N(μ,σ2),则PA.1193 B.1359 C.2718 D.3413二、填空题:本题共4小题,每小题5分,共20分。13.为计算,设计了下面的程序框图,则在空白框中应填入______.14.在大小相同的6个球中,2个是红球,4个是白球.若从中任意选取3个,则所选的3个球中至少有1个红球的概率是________.(结果用分数表示)15.若从甲乙丙丁4位同学中选出3位同学参加某个活动,则甲被选中的概率为__________.16.已知命题“若,则”,在其逆命题,否命题,逆否命题中,真命题的个数是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面,四边形为正方形,,、分别是、中点.(1)证明:(2)求平面与平面所成锐二面角的值.18.(12分)设函数.(1)若是的极值点,求的值.(2)已知函数,若在区间(0,1)内仅有一个零点,求的取值范围.19.(12分)已知椭圆,为右焦点,圆,为椭圆上一点,且位于第一象限,过点作与圆相切于点,使得点,在的两侧.(Ⅰ)求椭圆的焦距及离心率;(Ⅱ)求四边形面积的最大值.20.(12分)已知,:,:.(I)若是的充分条件,求实数的取值范围;(Ⅱ)若,“或”为真命题,“且”为假命题,求实数的取值范围21.(12分)已知函数.(1)判断函数的奇偶性,并证明你的结论;(2)求满足不等式的实数的取值范围.22.(10分)已知函数.(1)解不等式;(2)若对任意,不等式恒成立,求实数的最大值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】试题分析:将5张奖票不放回地依次取出共有种不同的取法,若活动恰好在第四次抽奖结束,则前三次共抽到2张中奖票,第四次抽到最后一张中奖票.共有种取法,∴考点:古典概型及其概率计算公式2、A【解题分析】

利用,求出,再利用,求出即可【题目详解】,,,则有,代入得,则有,,,又,故答案选A【题目点拨】本题考查三角函数的图像问题,依次求出和即可,属于简单题3、A【解题分析】

求函数的导数,利用导数的几何意义以及直线垂直的等价条件,转化为有解,即可得到结论.【题目详解】由题意,函数的导数,若曲线C存在与直线垂直的切线,则切线的斜率为,满足,即有解,因为有解,又因为,即,所以实数的取值范围是,故选A.【题目点拨】本题主要考查了导数的几何意义的应用,以及方程的有解问题,其中解答中把曲线存在与直线垂直的切线,转化为有解是解答的关键,着重考查了分析问题和解答问题的能力.4、A【解题分析】分析:先令,则且原不等式转化为,再根据单调性得结果.详解:令,则因为原不等式转化为,所以因此选A.点睛:解函数不等式,首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内.5、D【解题分析】分析:先解绝对值不等式得集合A,再解分式不等式得集合B,最后根据交集定义求结果.详解:因为,所以因为,所以或x>3,因此,选D.点睛:集合的基本运算的关注点(1)看元素组成.集合是由元素组成的,从研究集合中元素的构成入手是解决集合运算问题的前提.(2)有些集合是可以化简的,先化简再研究其关系并进行运算,可使问题简单明了,易于解决.(3)注意数形结合思想的应用,常用的数形结合形式有数轴、坐标系和Venn图.6、C【解题分析】

利用分类计数加法原理和分步计数乘法原理计算即可,注意这个特殊元素的处理.【题目详解】已知集合,,现从这两个集合中各取出一个元素组成一个新的双元素组合,分为2类:含5,不含5;则可以组成这样的新集合的个数为个.故选C.7、A【解题分析】试题分析:依题意,输入的的值为,执行次循环体,的值变为,这时,如果输出的值恰好是,则函数关系式可能为,故应填A.考点:程序框图中的循环结构.8、A【解题分析】

根据幂函数的定义,求出m的值,代入判断即可.【题目详解】函数是幂函数,,解得:或,时,,其图象与两坐标轴有交点不合题意,时,,其图象与两坐标轴都没有交点,符合题意,故,故选A.【题目点拨】本题考查了幂函数的定义,考查常见函数的性质,是一道常规题.9、C【解题分析】∵所给等式左边的底数依次分别为1,2;1,2,3;1,2,3,4;

右边的底数依次分别为3,6,10,(注意:这里,),

∴由底数内在规律可知:第五个等式左边的底数为1,2,3,4,5,6,

右边的底数为,又左边为立方和,右边为平方的形式,

故有,故选C.点睛:本题考查了,所谓归纳推理,就是从个别性知识推出一般性结论的推理.它与演绎推理的思维进程不同.归纳推理的思维进程是从个别到一般,而演绎推理的思维进程不是从个别到一般,是一个必然地得出的思维进程.解答此类的方法是从特殊的前几个式子进行分析找出规律.观察前几个式子的变化规律,发现每一个等式左边为立方和,右边为平方的形式,且左边的底数在增加,右边的底数也在增加.从中找规律性即可.10、A【解题分析】由于焦点到渐近线的距离为,故,依题意有,所以离心率为.【题目点拨】本小题主要考查直线和双曲线的位置关系,考查双曲线渐近线的几何性质,考查三角形的面积公式和双曲线离心率的求法.设双曲线的焦点为,双曲线的渐近线为,故双曲线焦点到渐近线的距离为,故焦点到渐近线的距离为.11、C【解题分析】

由题意利用三角函数的图象变换原则,即可得出结论.【题目详解】由题意,将函数的图象向右平移个单位长度,可得.故选C.【题目点拨】本题主要考查三角函数的图像变换,熟记图像变换原则即可,属于常考题型.12、B【解题分析】由正态分布的性质可得,图中阴影部分的面积S=0.9545-0.6827则落入阴影部分(曲线C为正态分布N(-1,1)的密度曲线)的点的个数的估计值为本题选择B选项.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

根据框图作用分析即可求得空白处应该填入的语句.【题目详解】由程序框图的输出值,结合本框图的作用是计算,考虑,,所以空白处应该填入.故答案为:【题目点拨】此题考查程序框图的识别,根据已知程序框图需要输出的值填补框图,关键在于弄清框图的作用,准确分析得解.14、【解题分析】试题分析:由题意知本题是一个古典概型,∵试验发生包含的所有事件是从6个球中取3个,共有种结果,而满足条件的事件是所选的3个球中至少有1个红球,包括有一个红球2个白球;2个红球一个白球,共有∴所选的3个球中至少有1个红球的概率是.考点:等可能事件的概率.15、【解题分析】分析:先确定4位同学中选出3位同学事件数,再确定甲被选中事件数,最后根据古典概型概率公式求结果.详解:因为4位同学中选出3位同学共有种,甲被选中事件数有,所以甲被选中的概率为.点睛:古典概型中基本事件数的探求方法(1)列举法.(2)树状图法:适合于较为复杂的问题中的基本事件的探求.对于基本事件有“有序”与“无序”区别的题目,常采用树状图法.(3)列表法:适用于多元素基本事件的求解问题,通过列表把复杂的题目简单化、抽象的题目具体化.(4)排列组合法:适用于限制条件较多且元素数目较多的题目.16、2【解题分析】

根据原命题和逆否命题真假性相同可得到逆否命题的真假;写出命题的否命题和逆命题可得到其真假性.【题目详解】易知命题“若,则”为假命题,故其逆否命题也为假命题;逆命题为“若,则”是真命题;否命题为“若,则”,也为真命题.故答案为2.【题目点拨】这个题目考查了命题的逆否命题和逆命题,和否命题的书写以及真假的判断,否命题既否条件又否结论,命题的否定是只否结论.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2).【解题分析】

(1)要证,可证平面,利用线面垂直即可得到线线垂直.(2)建立空间直角坐标系,计算平面的一个法向量和平面的一个法向量,利用向量夹角公式即可得到答案.【题目详解】(1)平面,又,为平面上相交直线,平面,而等腰三角形中有平面而平面,.(2)易知两两垂直,故分别以其所在直线为坐标轴建系则求得平面的一个法向量,平面的一个法向量平面与平面所成锐二面角为.【题目点拨】本题主要考查立体几何中线线垂直,二面角的相关计算,意在考查学生的空间想象能力,计算能力,转化能力,难度中等.18、(1)(2)【解题分析】

(1)直接利用函数的导数和函数的极值求出的值.(2)利用函数的导数首先求出函数的单调区间,进一步利用分类讨论思想求出参数的取值范围.【题目详解】解:(1),,因为是的极值点,所以,解得(2),.①当时,当时,单调递增,又因此函数在区间内没有零点.②当时,当时,单调递增,当时,单调递减,又,因此要使函数在区间内有零点,必有,所以,解得,舍去③当时,当时,单调递减,又,因此要使函数在区间内有零点,必有,解得满足条件,综上可得,的取值范围是.【题目点拨】本题考查的知识要点:函数的导数的应用,利用分类讨论思想求出参数的取值范围,主要考察学生的运算能力和转换能力,属于中档题.19、(Ⅰ),;(Ⅱ).【解题分析】分析:(Ⅰ)利用椭圆的几何性质求椭圆的焦距及离心率.(Ⅱ)设(,),先求出四边形面积的表达式,再利用基本不等式求它的最大值.(Ⅰ)在椭圆:中,,,所以,故椭圆的焦距为,离心率.(Ⅱ)设(,),则,故.所以,所以,.又,,故.因此.由,得,即,所以,当且仅当,即,时等号成立.点睛:本题的关键在于求此的表达式和化简,由于四边形是不规则的图形,所以用割补法求其面积,其面积求出来之后,又要利用已知条件将其化简为,再利用基本不等式求其最小值.20、(I)(Ⅱ)【解题分析】试题分析:(1),是的充分条件,是的子集,所以;(2)由题意可知一真一假,当时,,分别求出真假、假真时的取值范围,最后去并集就可以.试题解析:(1),∵是的充分条件,∴是的子集,,∴的取值范围是.(2)由题意可知一真一假,当时,,真假时,由;假真时,由或.所以实数的取值范围是.考点:含有逻辑联结词命题真假性.21、(1)为奇函数;证明见解析(2)【解题分

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论