版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省池州市数学高二第二学期期末联考试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设地球的半径为R,在纬度为的纬线圈上有A,B两地,若这两地的纬线圈上的弧长为,则A,B两地之间的球面距离为()A. B. C. D.2.已知关于的实系数一元二次方程的一个根在复平面上对应点是,则这个方程可以是()A. B.C. D.3.已知等差数列的前项和为,,,则()A.10 B.12 C.16 D.204.某次运动会中,主委会将甲、乙、丙、丁四名志愿者安排到三个不同比赛项目中担任服务工作,每个项目至少1人,若甲、乙两人不能到同一个项目,则不同的安排方式有()A.24种 B.30种 C.36种 D.72种5.下列四个结论中正确的个数是(1)对于命题使得,则都有;(2)已知,则(3)已知回归直线的斜率的估计值是2,样本点的中心为(4,5),则回归直线方程为;(4)“”是“”的充分不必要条件.A.1 B.2 C.3 D.46.设离散型随机变量的分布列如右图,则的充要条件是()123A.B.C.D.7.若点是曲线上任意一点,则点到直线的距离的最小值为()A. B. C. D.8.已知函数,当时,取得最小值,则等于()A.-3 B.2 C.3 D.89.甲、乙等人在南沙聚会后在天后宫沙滩排成一排拍照留念,甲和乙必须相邻的排法有().A.种 B.种 C.种 D.种10.同学聚会上,某同学从《爱你一万年》,《十年》,《父亲》,《单身情歌》四首歌中选出两首歌进行表演,则《爱你一万年》未选取的概率为()A.B.C.D.11.若对任意实数,有,则()A. B. C. D.12.若函数f(x)=(a>0且a≠1)在(-∞,+∞)上既是奇函数又是增函数,则g(x)=的图象是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在的展开式中的系数为__________.14.若关于的不等式的解集是,则实数的值是__________.15.设向量与,共线,且,,则________.16.设随机变量的概率分布列如下图,则_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角,,的对边分别是,且.(1)求角的大小;(2)已知等差数列的公差不为零,若,且,,成等比数列,求数列的前项和.18.(12分)有5人进入到一列有7节车厢的地铁中,分别求下列情况的概率(用数字作最终答案):(1)恰好有5节车厢各有一人;(2)恰好有2节不相邻的空车厢;(3)恰好有3节车厢有人.19.(12分)如图,已知椭圆与椭圆的离心率相同.(1)求的值;(2)过椭圆的左顶点作直线,交椭圆于另一点,交椭圆于两点(点在之间).①求面积的最大值(为坐标原点);②设的中点为,椭圆的右顶点为,直线与直线的交点为,试探究点是否在某一条定直线上运动,若是,求出该直线方程;若不是,请说明理由.20.(12分)已知函数(1)若,解不等式:;(2)若当时,函数都能取到最小值,求实数的取值范围.21.(12分)已知椭圆的焦距为2,左右焦点分别为,以原点为圆心,以椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)设不过原点的直线与椭圆C交于两点,若直线与的斜率分别为,且,求证:直线过定点,并求出该定点的坐标;22.(10分)已知函数.(1)当时,求函数在点处的切线方程;(2)若函数有两个不同极值点,求实数的取值范围;(3)当时,求证:对任意,恒成立.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
根据纬线圈上的弧长为求出A,B两地间的径度差,即可得出答案。【题目详解】设球心为O,纬度为的纬线圈的圆心为O´,则∠O´AO=,∴O´A=OAcos∠O´AO=Rcos,设A,B两地间的径度差的弧度数为,则Rcos=,∴=,即A,B两地是⊙O´的一条直径的两端点,∴∠AOB=,∴A,B两地之间的球面距离为.答案:D.【题目点拨】本题涉及到了地理相关的经纬度概念。学生需理解其基本概念,将题干所述信息转换为数学相关知识求解。2、A【解题分析】
先由题意得到方程的两复数根为,(为虚数单位),求出,,根据选项,即可得出结果.【题目详解】因为方程的根在复平面内对应的点是,可设根为:,(为虚数单位),所以方程必有另一根,又,,根据选项可得,该方程为.故选A【题目点拨】本题主要考查复数的方程,熟记复数的运算法则即可,属于常考题型.3、D【解题分析】
利用等差数列的前项和公式以及通项公式即可求出.【题目详解】,,,,故选:D【题目点拨】本题考查了等差数列的前项和公式以及通项公式,考查了学生的计算,属于较易题.4、B【解题分析】
首先对甲、乙、丙、丁进行分组,减去甲、乙两人在同一个项目一种情况,然后进行3个地方的全排列即可得到答案.【题目详解】先将甲、乙、丙、丁分成三组(每组至少一人)人数分配是1,1,2共有种情况,又甲、乙两人不能到同一个项目,故只有5种分组情况,然后分配到三个不同地方,所以不同的安排方式有种,故答案选B.【题目点拨】本题主要考查排列组合的相关计算,意在考查学生的分析能力,逻辑推理能力和计算能力,难度不大.5、C【解题分析】
由题意,(1)中,根据全称命题与存在性命题的关系,即可判定是正确的;(2)中,根据正态分布曲线的性质,即可判定是正确的;(3)中,由回归直线方程的性质和直线的点斜式方程,即可判定是正确;(4)中,基本不等式和充要条件的判定方法,即可判定.【题目详解】由题意,(1)中,根据全称命题与存在性命题的关系,可知命题使得,则都有,是错误的;(2)中,已知,正态分布曲线的性质,可知其对称轴的方程为,所以是正确的;(3)中,回归直线的斜率的估计值是2,样本点的中心为(4,5),由回归直线方程的性质和直线的点斜式方程,可得回归直线方程为是正确;(4)中,当时,可得成立,当时,只需满足,所以“”是“”成立的充分不必要条件.【题目点拨】本题主要考查了命题的真假判定及应用,其中解答中熟记含有量词的否定、正态分布曲线的性质、回归直线方程的性质,以及基本不等式的应用等知识点的应用,逐项判定是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.6、B【解题分析】
由题设及数学期望的公式可得,则的充要条件是.应选答案B.7、C【解题分析】点是曲线上任意一点,所以当曲线在点P的切线与直线平行时,点P到直线的距离的最小,直线的斜率为1,由,解得或(舍).所以曲线与直线的切点为.点到直线的距离最小值是.选C.8、C【解题分析】
配凑成可用基本不等式的形式。计算出最值与取最值时的x值。【题目详解】当且仅当即时取等号,即【题目点拨】在使用均值不等式时需注意“一正二定三相等”缺一不可。9、B【解题分析】由题意利用捆绑法求解,甲、乙两人必须相邻的方法数为种.选.10、B【解题分析】,所以选B.11、B【解题分析】分析:根据,按二项式定理展开,和已知条件作对比,求出的值,即可求得答案.详解:,且,.故选:B.点睛:本题主要考查二项式定理的应用,二项式展开式的通项公式,求展开式中某项的系数.12、C【解题分析】本题考查指数型函数的奇偶性,单调性;对数函数的图像及图像的平移变换.因为是奇函数,所以恒成立,整理得:恒成立,所以则又函数在R上是增函数,所以于是函数的图像是由函数性质平移1个单位得到.故选C二、填空题:本题共4小题,每小题5分,共20分。13、45【解题分析】分析:根据展开式的通项公式,求出展开式中的系数,即可得出的展开式中的系数是多少.详解:展开式的通项公式为:,令,得的系数为,且无项,的展开式中的系数为45.故答案为:45.点睛:求二项展开式中的特定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k+1,代回通项公式即可.14、【解题分析】分析:先根据二次函数图像得恒成立且的两根为1,3,再根据韦达定理求实数的值详解:因为关于的不等式的解集是,所以恒成立且的两根为1,3,所以.点睛:一元二次方程的根与对应一元二次不等式解集以及对应二次函数零点的关系,是数形结合思想,等价转化思想的具体体现,注意转化时的等价性.15、-3【解题分析】
根据向量共线的坐标表示即可求解.【题目详解】,,且,共线,即.故答案为:【题目点拨】本题主要考查了向量共线的坐标运算,属于容易题.16、【解题分析】
利用概率之和为求得的值.解,求得的值,将对应的概率相加求得结果.【题目详解】根据,解得.解得或,故所求概率为.【题目点拨】本小题主要考查分布列的概率计算,考查含有绝对值的方程的解法,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】
1)首先利用正弦定理和三角函数关系式的恒等变换求出C的值.(2)利用(1)的结论,进一步利用等差数列的性质求出数列的首项和公差,进一步求出数列的通项公式,最后利用裂项相消法求出数列的和.【题目详解】(1)在△ABC中,角A,B,C的对边分别是a,b,c,且acosB+bcosA=2ccosC.利用正弦定理sinAcosB+sinBcosA=2sinCcosC,所以sin(A+B)=sinC=2sinCcosC,由于0<C<π,解得C.(2)设公差为d的等差数列{an}的公差不为零,若a1cosC=1,则a1=2,且a1,a3,a7成等比数列,所以,解得d=1.故an=2+n﹣1=n+1.所以,所以,,.【题目点拨】本题考查的知识要点:正弦定理的应用,等差数列的性质的应用,裂项相消法在数列求和中的应用,主要考察学生的运算能力和转换能力,属于基础题型.18、(1)3602401;(2)360016807;(3)【解题分析】
(1)5人进入到一列有7节车厢的地铁中,基本事件总数n=75=16807,恰好有5节车厢各有一人包含的基本事件的个数m(2)恰好有2节不相邻的空车厢包含的基本事件的个数m2=A(3)恰好有3节车厢有人包含的基本事件个数m3=C【题目详解】(1)5人进入到一列有7节车厢的地铁中,基本事件总数n=7恰好有5节车厢各有一人包含的基本事件的个数m1所以恰好有5节车厢各有一人的概率p1(2)恰好有2节不相邻的空车厢包含的基本事件的个数m2所以恰好有2节不相邻的空车厢的概率P2(3)恰好有3节车厢有人包含的基本事件个数m3所以恰好有3节车厢有人的概率p3【题目点拨】本题考查概率的求法,考查古典概型、排列组合等基础知识,考查运算求解能力,是基础题,计算概率类题目的时候,可以先将所有的可能种类的数目算出,然后算出符合题意的可能种类的数目,两者相除,即可算出概率。19、(1);(2)①;②点在定直线上【解题分析】
(1)利用两个椭圆离心率相同可构造出方程,解方程求得结果;(2)①当与轴重合时,可知不符合题意,则可设直线的方程:且;设,,联立直线与椭圆方程可求得,则可将所求面积表示为:,利用换元的方式将问题转化为二次函数的最值的求解,从而求得所求的最大值;②利用中点坐标公式求得,则可得直线的方程;联立直线与椭圆方程,从而可求解出点坐标,进而得到直线方程,与直线联立解得坐标,从而可得定直线.【题目详解】(1)由椭圆方程知:,离心率:又椭圆中,,,又,解得:(2)①当直线与轴重合时,三点共线,不符合题意故设直线的方程为:且设,由(1)知椭圆的方程为:联立方程消去得:即:解得:,,又令,此时面积的最大值为:②由①知:直线的斜率:则直线的方程为:联立方程消去得:,解得:则直线的方程为:联立直线和的方程,解得:点在定直线上运动【题目点拨】本题考查直线与椭圆的综合应用问题,涉及到椭圆方程的求解、椭圆中的三角形面积最值的求解、椭圆中的定直线问题;解决定直线问题的关键是能够通过已知条件求得所求点坐标中的定值,从而确定定直线;本题计算量较大,对于学生的运算与求解能力有较高的要求.20、(1);(2)【解题分析】
(1)分类讨论去绝对值,然后解不等式即可;(2)对,,分类讨论,发现在上是常数函数,只要不是即可,列不等式求解实数的取值范围.【题目详解】解:(1)当时,,当时,,得;当时,,得无解;当时,,得,综上所述:的解集为:;(2)当时,,若函数都能取到最小值,则不是的子集,当是的子集时,,解得,因为不是的子集,所以或;同理:当时,,因为不可能是的子集,所以此时函数都能取到最小值当时,,其在时明显有最小值,综上所述:的取值范围是.【题目点拨】本题考查绝对值不等式,分类讨论去绝对值是常用处理方法,其中将在区间上有最值的问题转化为集合的包含关系问题,是第(2)的关键,本题是中档题.21、(1)(2)线恒过定点,详见解析【解题分析】
(1)根据焦距得到,根据圆心到直线的距离得到,由得到,从而得到椭圆方程;(2)直线,联立得到,然后表示,代入韦达定理,得到和的关系,从而得
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 二零二五年度沈阳市租赁住宅租赁合同签订及履行协议
- 2024-2025学年高中语文第3单元10短文三篇教案新人教版必修4
- 二零二五年度海洋资源开发管理费合同范本
- 二零二五年度炊事员临时聘用合同签订及履行管理细则
- 网络教学资源在小学生阅读中的影响
- 岗位流程优化与执行策略的有效结合
- 银行体系内巡察工作风险管理探讨
- 2025年贵州财经职业学院高职单招职业适应性测试近5年常考版参考题库含答案解析
- 2025年西安铁路职业技术学院高职单招语文2018-2024历年参考题库频考点含答案解析
- 社区安全出口及疏散演练方案的实施要点
- 统编版语文八年级下册全册大单元整体教学设计表格式教案
- 改革开放教育援藏的创新及其成效
- 第3课+中古时期的西欧(教学设计)-【中职专用】《世界历史》(高教版2023基础模块)
- 山东省济宁市2023年中考数学试题(附真题答案)
- 班组建设工作汇报
- 供应链金融与供应链融资模式
- 工程类工程公司介绍完整x
- 板带生产工艺热连轧带钢生产
- 关键工序特殊过程培训课件精
- 轮机备件的管理(船舶管理课件)
- 统编《道德与法治》三年级下册教材分析
评论
0/150
提交评论