




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省南阳市南阳一中高二数学第二学期期末教学质量检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列函数中既是奇函数,又在区间上是单调递减的函数为()A. B. C. D.2.已知数列的前n项和为,满足,,若,则m的最小值为()A.6 B.7 C.8 D.93.在一次独立性检验中,其把握性超过99%但不超过99.5%,则的可能值为()参考数据:独立性检验临界值表0.1000.0500.0250.0100.0050.0012.7063.8415.0246.6357.87910.828A.5.424 B.6.765 C.7.897 D.11.8974.如果根据是否爱吃零食与性别的列联表得到,所以判断是否爱吃零食与性别有关,那么这种判断犯错的可能性不超过()注:0.1000.0500.0250.0100.001k2.7063.8415.0246.63510.828A.2.5% B.0.5% C.1% D.0.1%5.已知a,b∈R,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.函数是定义在区间上的可导函数,其导函数为,且满足,则不等式的解集为()A. B.C. D.7.有下列数据:下列四个函数中,模拟效果最好的为()A. B. C. D.8.设是两个不同的平面,是一条直线,以下命题正确的是()A.若,则 B.若,则C.若,则 D.若,则9.设0<p<1,随机变量X,Y的分布列分别为()X123Pp1-pp-Y123Pp1-p当X的数学期望取得最大值时,Y的数学期望为()A.2 B.3316 C.552710.如图,y=f(x)是可导函数,直线l:y=kx+2是曲线y=f(x)在x=3处的切线,令g(x)=xf(x),g'(x)是g(x)的导函数,则g'(3)=().A.-1 B.0 C.2 D.411.下列说法正确的是()A.若为真命题,则为真命题B.命题“若,则”的否命题是真命题C.命题“函数的值域是”的逆否命题是真命题D.命题“,关于的不等式有解”,则为“,关于的不等式无解”12.设集合A={x|x2﹣2x﹣3≤0},B={x|2﹣x>0},则A∩B=()A.[﹣3,2) B.(2,3] C.[﹣1,2) D.(﹣1,2)二、填空题:本题共4小题,每小题5分,共20分。13.将圆的一组等分点分别涂上红色或蓝色,从任意一点开始,按逆时针方向依次记录个点的颜色,称为该圆的一个“阶色序”,当且仅当两个“阶色序”对应位置上的颜色至少有一个不相同时,称为不同的“阶色序”.若某圆的任意两个“阶色序”均不相同,则称该圆为“阶魅力圆”.“4阶魅力圆”中最多可有的等分点个数为__________.14.如图,AD与BC是四面体ABCD中互相垂直的棱,BC=2.若AD=2c,且AB+BD=AC+CD=2a,其中a、c为常数,则四面体ABCD的体积的最大值是.15.有个元素的集合的3元子集共有20个,则=_______.16.已知集合,,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某工厂每年定期对职工进行培训以提高工人的生产能力(生产能力是指一天加工的零件数).现有、两类培训,为了比较哪类培训更有利于提高工人的生产能力,工厂决定从同一车间随机抽取100名工人平均分成两个小组分别参加这两类培训.培训后测试各组工人的生产能力得到如下频率分布直方图.(1)记表示事件“参加类培训工人的生产能力不低于130件”,估计事件的概率;(2)填写下面列联表,并根据列联表判断是否有的把握认为工人的生产能力与培训类有关:生产能力件生产能力件总计类培训50类培训50总计100(3)根据频率分布直方图,判断哪类培训更有利于提高工人的生产能力,请说明理由.参考数据0.150.100.0500.0250.0100.0052.0722.7063.8415.0246.6357.879参考公式:,其中.18.(12分)已知,命題对任意,不等式恒成立;命题存在,使得成立.(1)若为真命题,求的取值范围;(2)若为假,为真,求的取值范围.19.(12分)某中学一名数学老师对全班50名学生某次考试成绩分男女生进行了统计,其中120分(含120分)以上为优秀,绘制了如下的两个频率分布直方图:(1)根据以上两个直方图完成下面的列联表:成绩性别优秀不优秀合计男生女生总计(2)根据(1)中表格的数据计算,你有多大把握认为学生的数学成绩与性别之间有关系?2.0722.7063.8415.0246.6357.87910.8280.150.100.050.0250.0100.0050.001(3)若从成绩在[130,140]的学生中任取2人,求取到的2人中至少有1名女生的概率.20.(12分)已知数列的前n项和为,满足,且,.(1)求,,的值;(2)猜想数列的通项公式,并用数学归纳法予以证明.21.(12分)在直角坐标系中,直线的参数方程为,(为参数),以坐标原点为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,直线与曲线交于不同两点.(1)求直线和曲线的普通方程;(2)若点,求.22.(10分)在中的内角、、,,是边的三等分点(靠近点),.()求的大小.()当取最大值时,求的值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
由题意得,对于函数和函数都是非奇非偶函数,排除A、C.又函数在区间上单调递减,在区间单调递增,排除D,故选B.2、C【解题分析】
根据an=sn﹣sn﹣1可以求出{an}的通项公式,再利用裂项相消法求出sm,最后根据已知,解出m即可.【题目详解】由已知可得,,,,(n≥2),1,即,解之得,或7.5,故选:C.【题目点拨】本题考查前n项和求通项公式以及裂项相消法求和,考查了分式不等式的解法,属于中等难度.3、B【解题分析】
根据独立性检验表解题【题目详解】把握性超过99%但不超过99.5%,,选B【题目点拨】本题考查独立性检验表,属于简单题.4、A【解题分析】
根据得到,得到答案.【题目详解】,故,故判断“是否爱吃零食与性别有关”出错的可能性不超过2.5%.故选:.【题目点拨】本题考查了独立性检验问题,意在考查学生的理解能力和应用能力.5、A【解题分析】
根据复数的基本运算,结合充分条件和必要条件的定义进行判断即可.【题目详解】解:因为,若,则等式成立,即充分性成立,若成立,即,所以解得或即必要性不成立,则“”是“”的充分不必要条件,故选:A.【题目点拨】本题主要考查充分条件和必要条件的判断,结合复数的基本运算是解决本题的关键,属于基础题.6、D【解题分析】
构造函数,对函数求导得到函数的单调性,进而将原不等式转化为,,进而求解.【题目详解】根据题意,设,则导数;函数在区间上,满足,则有,则有,即函数在区间上为增函数;,则有,解可得:;即不等式的解集为;故选:D.【题目点拨】这个题目考查了函数的单调性的应用,考查了解不等式的问题;解函数不等式问题,可以直接通过函数的表达式得到结果,如果直接求解比较繁琐,可以研究函数的单调性,零点等问题,将函数值大小问题转化为自变量问题.7、A【解题分析】分析:将,,代入四个选项,可得结论.详解:将,,代入四个选项,可得A模拟效果最好.故选:A.点睛:本题考查选择合适的模拟来拟合一组数据,考查四种函数的性质,本题是一个比较简单的综合题目.8、C【解题分析】对于A、B、D均可能出现,而对于C是正确的.9、D【解题分析】
先利用数学期望公式结合二次函数的性质得出EX的最小值,并求出相应的p,最后利用数学期望公式得出EY的值。【题目详解】∵EX=p∴当p=14时,EX取得最大值.此时EY=-2p【题目点拨】本题考查数学期望的计算,考查二次函数的最值,解题的关键就是数学期望公式的应用,考查计算能力,属于中等题。10、B【解题分析】
将点3,1的坐标代入切线方程得出k的值,得出f'3=ky=gx求导得g'x【题目详解】将点3,1代入直线y=kx+2的方程得3k+2=1,得k=-13,所以,由于点3,1在函数y=fx的图象上,则f对函数gx=xfx∴g'3【题目点拨】本题考查导数的几何意义,在处理直线与函数图象相切的问题时,抓住以下两点:(1)函数在切点处的导数值等于切线的斜率;(2)切点是切线与函数图象的公共点。11、C【解题分析】
采用命题的基本判断法进行判断,条件能推出结论为真,推不出为假【题目详解】A.若为真命题,则中有一个为真命题即可满足,但推不出为真命题,A错B.命题“若,则”的否命题是:“若,则”,当时,不满足,B错C.原命题与逆否命题真假性相同,的取值大于零,所以值域为,C为真命题D.命题“,关于的不等式有解”,则为“,关于的不等式无解”,D错答案选C【题目点拨】四种常见命题需要熟悉基本改写方式,原命题与逆否命题为真,逆命题与否命题为真,原命题与逆命题或否命题真假性无法判断,需改写之后再进行判断,命题的否定为只否定结论,全称改存在,存在改全称12、C【解题分析】
求得集合A={x|-1≤x≤3},B={x|x<2},根据集合的交集运算,即可求解.【题目详解】由题意,集合A={x|x所以A∩B={x|-1≤x<2}=[-1,2).故选:C.【题目点拨】本题主要考查了集合的交集运算,其中解答中正确求解集合A,B,再根据集合的运算求解是解答的关键,着重考查了推理与运算能力,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】分析:由题意可得,“4阶色序”中,每个点的颜色有两种选择,故“4阶色序”共有2×2×2×2=1种,从两个方面进行了论证,即可得到答案.详解:“4阶色序”中,每个点的颜色有两种选择,故“4阶色序”共有2×2×2×2=1种,一方面,n个点可以构成n个“4阶色序”,故“4阶魅力圆”中的等分点的个数不多于1个;另一方面,若n=1,则必需包含全部共1个“4阶色序”,不妨从(红,红,红,红)开始按逆时针方向确定其它各点颜色,显然“红,红,红,红,蓝,蓝,蓝,蓝,红,蓝,蓝,红,红,蓝,红,蓝”符合条件.故“4阶魅力圆”中最多可有1个等分点.故答案为:1.点睛:本题主要考查合情推理的问题,解题的关键分清题目所包含的条件,读懂已知条件.14、【解题分析】
作BE⊥AD于E,连接CE,则AD⊥平面BEC,所以CE⊥AD,由题设,B与C都是在以AD为焦距的椭球上,且BE、CE都垂直于焦距AD,所以BE=CE.取BC中点F,连接EF,则EF⊥BC,EF=2,,四面体ABCD的体积,显然,当E在AD中点,即B是短轴端点时,BE有最大值为b=,所以.[评注]本题把椭圆拓展到空间,对缺少联想思维的考生打击甚大!当然,作为填空押轴题,区分度还是要的,不过,就抢分而言,胆大、灵活的考生也容易找到突破点:AB=BD(同时AC=CD),从而致命一击,逃出生天!15、6【解题分析】
在个元素中选取个元素共有种,解=20即可得解.【题目详解】在个元素中选取个元素共有种,解=20得,故答案为6.【题目点拨】本题考查了组合数在集合中的应用,属于基础题.16、【解题分析】分析:直接利用交集的定义求解即可.详解:因为集合,,所以由交集的定义可得,故答案为点睛:本题考查集合的交集的定义,意在考查对基本运算的掌握情况,属于简单题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)见解析;(3)见解析【解题分析】
(1)由频率分布直方图用频率估计概率,求得对应的频率值,用频率估计概率即可;(2)根据题意填写列联表,计算观测值,对照临界值得出结论;(3)根据频率分布直方图,判断、类生产能力在130以上的频率值,比较得出结论.【题目详解】解:(1)由频率分布直方图,用频率估计概率得,所求的频率为,估计事件的概率为;(2)根据题意填写列联表如下,类培训生产能力件的人数为,类培训生产能力件的人数为,类培训生产能力件的人数为,类培训生产能力件的人数为,生产能力件生产能力件总计类培训361450类培训123850总计4852100由列联表计算,所以有的把握认为工人的生产能力与培训类有关;(3)根据频率分布直方图知,类生产能力在130以上的频率为0.28,类培训生产能力在130以上的频率为0.76,判断类培训更有利于提高工人的生产能力.【题目点拨】本题考查了频率分布直方图与独立性检验的应用问题,是基础题.18、(1);(2)【解题分析】
(1)由题得,解不等式即得解;(2)先由题得,由题得,中一个是真命题,一个是假命题,列出不等式组,解不等式组得解.【题目详解】(1)对任意,不等式恒成立,当,由对数函数的性质可知当时,的最小值为,,解得.因此,若为真命题时,的取值范围是.(2)存在,使得成立,.命题为真时,,且为假,或为真,,中一个是真命题,一个是假命题.当真假时,则解得;当假真时,,即.综上所述,的取值范围为.【题目点拨】本题主要考查指数对数函数的性质和不等式的恒成立问题的解法,考查复合命题的真假和存在性问题,意在考查学生对这些知识的理解掌握水平和分析推理能力.19、(1)详见解析;(2)有95%的把握认为学生的数学成绩与性别之间有关系;(3).【解题分析】
(1)根据表格数据填写好联表;(2)计算出的数值,由此判断出所以有95%的把握认为学生的数学成绩与性别之间有关系.(3)先计算出男生、女生分别有多少人,然后用减去全部都是男生的概率,求得所求的概率.【题目详解】(1)成绩性别优秀不优秀合计男生131023女生72027总计203050(2)由(1)中表格的数据知,.因为,所以有95%的把握认为学生的数学成绩与性别之间有关系.(3)成绩在[130,140]的学生中男生有人,女生有人,从6名学生中任取2人,共有种选法,若选取的都是男生,共有种选法;故所求事件的概率.【题目点拨】本小题主要考查列联表独立性检验,考查古典概型概率计算,考查对立事件,属于基础题.20、(1),,(2)猜想,证明见解析.【解题分析】
1利用代入计算,可得结论;2猜想,然后利用归纳法进行证明,检验时等式成立,假设时命题成立,证明当时命题也成立.【题目详解】1,且,当时,,,当时,,,或舍,当时,,,或舍,,,;2由1猜想,下面用数学归纳
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 小学心理健康教育汇报
- 品类管理月报
- 2025浙江金丽温高速公路有限公司温州管理处招聘8人笔试历年参考题库附带答案详解
- 2025年多索茶碱用药指导试题
- 2025浙江定海区交通运输局下属国有企业招聘2人笔试历年参考题库附带答案详解
- 青岛第二中学2025届高一物理第二学期期末统考试题含解析
- 多重耐药病人的护理
- 互联网医疗平台2025年在线问诊咨询效率与患者体验研究报告
- 互联网医疗平台2025年在线问诊服务与患者医疗数据安全治理体系建设报告
- 语言培训课件
- 浙江省杭州市保俶塔中学2025届七上数学期末综合测试试题含解析
- 【课件】空间向量运算的坐标表示(课件)数学人教A版2019选择性必修第一册
- (零诊)成都市2023级高三高中毕业班摸底测试数学试卷(含答案)
- 广东省佛山市2024-2025学年高一下学期6月期末考试 数学 含解析
- 2025年全国高校辅导员素质能力大赛基础知识测试题及答案(共3套)
- 律师事务所客户信息保密规定
- 云南楚雄州金江能源集团有限公司招聘笔试真题2024
- 2025-2030中国动力电池回收利用技术路线与经济性评估分析研究报告
- 7下期末家长会课件
- 酒店前厅服务流程标准化管理
- 互联网行业产品经理专业顾问聘用协议
评论
0/150
提交评论