清华大学附中2024届数学高二第二学期期末学业质量监测模拟试题含解析_第1页
清华大学附中2024届数学高二第二学期期末学业质量监测模拟试题含解析_第2页
清华大学附中2024届数学高二第二学期期末学业质量监测模拟试题含解析_第3页
清华大学附中2024届数学高二第二学期期末学业质量监测模拟试题含解析_第4页
清华大学附中2024届数学高二第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩9页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

清华大学附中2024届数学高二第二学期期末学业质量监测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若双曲线的离心率大于2,则该双曲线的虚轴长的取值范围是()A. B. C. D.2.已知=(为虚数单位),则复数()A. B. C. D.3.一次数学考试后,甲说:我是第一名,乙说:我是第一名,丙说:乙是第一名。丁说:我不是第一名,若这四人中只有一个人说的是真话且获得第一名的只有一人,则第一名的是()A.甲 B.乙 C.丙 D.丁4.已知,则的值是A. B. C. D.5.将函数y=sin2x+π6的图象向右平移π6个单位长度后,得到函数f(x)的图象,A.kπ-5π12C.kπ-π36.在一次试验中,测得的四组值分别是A(1,2),B(3,4),C(5,6)D(7,8),则y与x之间的回归直线方程为()A. B. C. D.7.在极坐标系中,点关于极点的对称点为A. B. C. D.8.下列命题中为真命题的是()A.若B.命题:若,则或的逆否命题为:若且,则C.“”是“直线与直线互相垂直”的充要条件D.若命题,则9.若函数在为增函数,则实数的取值范围是()A. B.C. D.10.已知x,y的取值如下表,从散点图知,x,y线性相关,且y=0.6x+a,则下列说法正确的是(x1234y1.41.82.43.2A.回归直线一定过点(2.2,2.2)B.x每增加1个单位,y就增加1个单位C.当x=5时,y的预报值为3.7D.x每增加1个单位,y就增加0.7个单位11.甲、乙、丙、丁、戊五人站成一排,要求甲、乙均不与丙相邻,则不同的排法种数为()A.72种 B.52种 C.36种 D.24种12.己知函数,其中为函数的导数,求()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若曲线在矩阵对应的变换下变为一个椭圆,则椭圆的离心率为____.14.在我校2017年高二某大型考试中,理科数学成绩,统计结果显示.假设我校参加此次考试的理科同学共有2000人,那么估计此次考试中我校成绩高于120分的人数是___________.15.通常,满分为分的试卷,分为及格线,若某次满分为分的测试卷,人参加测试,将这人的卷面分数按照分组后绘制的频率分布直方图如图所示.由于及格人数较少,某位老师准备将每位学生的卷面分采用“开方乘以取整”的方式进行换算以提高及格率(实数的取整等于不超过的最大整数),如:某位学生卷面分,则换算成分作为他的最终考试成绩,则按照这种方式,这次测试的及格率将变为__________.16.已知复数z满足,则________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)二次函数满足,且解集为(1)求的解析式;(2)设,若在上的最小值为,求的值.18.(12分)(1)用分析法证明:;(2)用数学归纳法证明:.19.(12分)如图,正四棱柱的底面边长,若异面直线与所成角的大小为,求正四棱柱的体积.20.(12分)已知函数.(1)讨论函数的单调性;(2)对于任意正实数x,不等式恒成立,求实数k的取值范围.21.(12分)已知函数.(1)当时,证明:;(2)若在的最大值为2,求a的值.22.(10分)已知函数.(1)当时,求不等式的解集;(2)设函数,当时,,求的取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

根据离心率大于2得到不等式:计算得到虚轴长的范围.【题目详解】,,,故答案选C【题目点拨】本题考查了双曲线的离心率,虚轴长,意在考查学生的计算能力.2、D【解题分析】试题分析:由,得,故选D.考点:复数的运算.3、C【解题分析】

通过假设法来进行判断。【题目详解】假设甲说的是真话,则第一名是甲,那么乙说谎,丙也说谎,而丁说的是真话,而已知只有一个人说的是真话,故甲说的不是真话,第一名不是甲;假设乙说的是真话,则第一名是乙,那么甲说谎,丙说真话,丁也说真话,而已知只有一个人说的是真话,故乙说谎,第一名也不是乙;假设丙说的是真话,则第一名是乙,所以乙说真话,甲说谎,丁说的是真话,而已知只有一个人说的是真话,故丙在说谎,第一名也不是乙;假设丁说的是真话,则第一名不是丁,而已知只有一个人说的是真话,那么甲也说谎,说明甲也不是第一名,同时乙也说谎,说明乙也不是第一名,第一名只有一人,所以只有丙才是第一名,故假设成立,第一名是丙。本题选C。【题目点拨】本题考查了推理能力。解决此类问题的基本方法就是假设法。4、D【解题分析】,,又,故选D.5、D【解题分析】

求出图象变换的函数解析式,再结合正弦函数的单调性可得出结论.【题目详解】由题意f(x)=sin2kπ-π∴kπ-π故选D.【题目点拨】本题考查三角函数的平移变换,考查三角函数的单调性.解题时可结合正弦函数的单调性求单调区间.6、A【解题分析】分析:根据所给的这组数据,取出这组数据的样本中心点,把样本中心点代入所给的四个选项中验证,若能够成立的只有一个,这一个就是线性回归方程.详解:∵,∴这组数据的样本中心点是(4,5)把样本中心点代入四个选项中,只有y=x+1成立,故选A.点睛:本题考查求线性回归方程,一般情况下是一个运算量比较大的问题,解题时注意平均数的运算不要出错,注意系数的求法,运算时要细心,但是对于一个选择题,还有它特殊的加法.7、C【解题分析】分析:在极坐标系中,关于极点的对称点为详解:∵关于极点的对称点为,

∴关于极点的对称点为.

故选:C.点睛:本题考查一个点关于极点的对称点的求法,是基础题,解题时要认真审题,注意极坐标性质的合理运用.8、B【解题分析】分析:对四个命题,分别进行判断,即可得出结论.详解:对于A,,利用基本不等式,可得,故不正确;

对于B,命题:若,则或的逆否命题为:若且,则,正确;

对于C,“”是“直线与直线互相垂直”的充要条件,故不正确;

对于D,命题命题,则,故不正确.

故选:B.点睛:本题考查命题的真假判断与应用,考查学生分析解决问题的能力,属基础题.9、A【解题分析】

利用函数的导函数在区间恒为非负数列不等式,用分离常数法求得的取值范围.【题目详解】依题意,在区间上恒成立,即,当时,,故,在时为递增函数,其最大值为,故.所以选A.【题目点拨】本小题主要考查利用导数求解函数单调性有关的问题,考查正切函数的单调性,属于中档题.10、C【解题分析】

由已知求得样本点的中心的坐标,代入线性回归方程即可求得a值,进一步求得线性回归方程,然后逐一分析四个选项即可得答案.【题目详解】解:由已知得,x=1+2+3+44=2.5,由回归直线方程y^=0.6x+a^恒过样本中心点(2.5,2.2),得2.2=0.6×2.5+∴回归直线方程为ŷx每增加1个单位,y就增加1个单位,故B错误;当x=5时,y的预测值为3.1,故C正确;x每增加1个单位,y就增加0.6个单位,故D错误.∴正确的是C.故选C.【题目点拨】本题考查线性回归直线方程,解题关键是性质:线性回归直线一定过点(x11、C【解题分析】

当丙在第一或第五位置时,有种排法;当丙在第二或第四位置时,有种排法;当丙在第三或位置时,有种排法;则不同的排法种数为36种.12、A【解题分析】

设,判断奇偶性和导数的奇偶性,求和即可得到所求值.【题目详解】解:函数设,则即,即,则,又,,可得,即有,故选:.【题目点拨】本题考查函数的奇偶性和导数的奇偶性,考查运算能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、.【解题分析】

在曲线上任取一点,得出,由变换得出,代入方程可得出椭圆方程,由此可计算出椭圆的离心率.【题目详解】在曲线上任取一点,得出,①设点经过变换后对应的点的坐标为,由题意可得,则有,即,代入②式得,则,,,因此,椭圆的离心率为,故答案为.【题目点拨】本题考查坐标变换,考查相关点法求轨迹方程,同时也考查了椭圆离心率的求解,解题的关键就是利用相关点法求出轨迹方程,考查运算求解能力,属于中等题.14、200【解题分析】∵月考中理科数学成绩,统计结果显示,∴估计此次考试中,我校成绩高于120分的有人.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-2σ<X≤μ+2σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.15、.【解题分析】

通过题设中的频率分布直方图可计算不进行换算前分以上(含分)的学生的频率,此频率就是换算后的及格率.【题目详解】先考虑不进行换算前分以上(含分)的学生的频率,该频率为,换算后,原来分以上(含分)的学生都算及格,故这次测试的及格率将变为.【题目点拨】本题考查频率分布直方图的应用,属于基础题.16、3-i【解题分析】

利用复数的运算法则、共轭复数的性质即可得出.【题目详解】解:(z﹣2)i=1+i,则(z﹣2)i•(﹣i)=﹣i(1+i),可得z=2﹣i+1=3﹣i.故答案为:3﹣i.【题目点拨】本题考查了复数的运算法则、共轭复数的性质,考查了推理能力与计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)直接根据两个已知条件得到关于a,b,c的方程,解方程组即得的解析式;(2)对m分类讨论,利用二次函数的图像和性质求m的值.【题目详解】(1)∵∴即①又∵即的解集为∴是的两根且a>0.∴②③a=2,b=1,c=-3∴(2)其对称轴方程为①若即m<-3时,由得不符合②若即时,得:符合③若即m>9时,=由得不符合题意∴【题目点拨】这个题目考查了二次函数的解析式的求法,二次函数的解析式有:两根式,即已知函数的两个零点可设这种形式;顶点式,已知函数的顶点可设为这种形式;一般式,涉及三个未知数,需列方程组求解;二次函数的最值和函数的对称轴有直接关系,在整个实数集上,最值在轴处取得,在小区间上需要讨论轴和区间的关系,得到最值.18、(1)见解析;(2)见解析.【解题分析】

(1)利用分析法逐步平方得出成立,可证明出原不等式成立;(2)先验证时等式成立,然后假设当时等式成立,可得出,然后再等式两边同时加上,并在所得等式右边提公因式,化简后可得出所证等式在时成立,由归纳原理得知所证不等式成立.【题目详解】(1)要证明成立,只需证明成立,即证明成立,只需证明成立,即证明成立,因为显然成立,所以原不等式成立,即;(2)①当时,,等式左边,右边,等式成立;②设当时,等式成立,即,则当时,,即成立,综上所述,.【题目点拨】本题考查分析法与数学归纳法证明不等式以及等式问题,证明时要熟悉这两种方法证明的基本步骤与原理,考查逻辑推理能力,属于中等题.19、16【解题分析】分析:由正四棱柱的性质得,从而,进而,由此能求出正四棱柱的体积.详解:∵∴为与所成角且∵,∴点睛:本题主要考查异面直线所成的角、正四棱柱的性质以及棱柱的体积的公式,是中档题,解题时要认真审题,注意空间思维能力的培养.求异面直线所成的角先要利用三角形中位线定理以及平行四边形找到异面直线所成的角.20、(1)在上单调递减,在上单调递增(2)【解题分析】

(1)利用导数的正负即可求出单调区间;(2)分离参数,构造函数,求出函数的最小值即可;【题目详解】(1)因为.所以,令,得,当时,;当时,所以函数在上单调递减,在上单调递增.(2)由于,恒成立,所以.构造函数,所以.令,解得,当时,,当时,.所以函数在点处取得最小值,即.因此所求k的取值范围是.【题目点拨】本题主要考查了利用导数研究函数的单调性以及不等式的恒成立问题,考查计算能力和分析问题的能力,以及转化思想,属于中档题.21、(1)见解析(2)【解题分析】

(1)由导数求出的最大值即可证;(2)求出导函数,分类讨论确定的正负,得的单调性及最大值后可得.【题目详解】解:(1)的定义域为,当时,,.令,得,令,得;所以在单调递增,在单调递减.所以,即.(2),(i)当时,在单调递增,它的最大值为,所以符合题意;(ii)当时,在单调递增,在单调递减,它的最大值为,解得(不合,舍去);(iii)当时,在单调递减,它的最大值为,所以(不合,舍去);综上,a的值为.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论