版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届山西省临汾一中数学高二下期末经典试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知在R上是奇函数,且A.-2 B.2 C.-98 D.982.若是互不相同的空间直线,是不重合的平面,则下列命题中真命题是()A.若则B.若则C.若,,则D.若,,则3.甲、乙、丙、丁4个人跑接力赛,则甲乙两人必须相邻的排法有()A.6种 B.12种 C.18种 D.24种4.一个几何体的三视图如图所示,若主视图是上底为2,下底为4,高为1的等腰梯形,左视图是底边为2的等腰三角形,则该几何体的体积为()A. B. C.2 D.45.一同学在电脑中打出如下若干个圈:○●○○●○○○●○○○○●○○○○○●……若将此若干个圈依此规律继续下去,得到一系列的圈,那么在前55个圈中的●个数是()A.10 B.9 C.8 D.116.已知是离散型随机变量,,,,则()A. B. C. D.7.已知随机变量,,若,,则()A.0.1 B.0.2 C.0.32 D.0.368.已知,是平面内两个互相垂直的单位向量,若向量满足,则的最大值是()A.1 B.2 C. D.9.在直角坐标系中,以为极点,轴正半轴为极轴建立极坐标系,曲线的极坐标方程为,曲线的参数方程为(为参数,).若与有且只有一个公共点,则实数的取值范围是()A. B. C. D.或10.如果函数y=f(x)的图象如图所示,那么导函数的图象可能是A. B. C. D.11.抛物线的焦点为,点是上一点,,则()A. B. C. D.12.在长方体中,,,则异面直线与所成角的余弦值为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知,则_____.14.若双曲线的一个焦点到一条渐近线的距离等于焦距的,则该双曲线的渐近线方程是__________15.若曲线与直线满足:①与在某点处相切;②曲线在附近位于直线的异侧,则称曲线与直线“切过”.下列曲线和直线中,“切过”的有________.(填写相应的编号)①与②与③与④与⑤与16.(文科学生做)函数的值域为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在直角坐标系中,倾斜角为的直线经过坐标原点,曲线的参数方程为(为参数).以点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)求与的极坐标方程;(2)设与的交点为、,与的交点为、,且,求值.18.(12分)在5道题中有3道理科题和2道文科题.如果不放回地依次抽取2道题,求:(l)第1次抽到理科题的概率;(2)第1次和第2次都抽到理科题的概率;(3)在第1次抽到理科题的条件下,第2次抽到理科题的概率.19.(12分)已知函数,.(I)若,求曲线在点处的切线方程;(Ⅱ)若函数在上是减函数,即在上恒成立,求实数的取值范围.20.(12分)已知向量,函数.(1)求函数的最小正周期及单调递增区间;(2)在中,三内角的对边分别为,已知函数的图像经过点,成等差数列,且,求a的值.21.(12分)如图,已知四棱锥P-ABCD中,底面ABCD是直角梯形,AD//BC,BC=2AD,AD⊥CD,PD⊥平面ABCD,E为PB的中点.(1)求证:AE//平面PDC;(2)若BC=CD=PD,求直线AC与平面PBC所成角的余弦值.22.(10分)在极标坐系中,已知圆的圆心,半径(1)求圆的极坐标方程;(2)若,直线的参数方程为(t为参数),直线交圆于两点,求弦长的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】∵f(x+4)=f(x),∴f(x)是以4为周期的周期函数,∴f(2019)=f(504×4+3)=f(3)=f(-1).又f(x)为奇函数,∴f(-1)=-f(1)=-2×12=-2,即f(2019)=-2.故选A2、C【解题分析】
对于A,考虑空间两直线的位置关系和面面平行的性质定理;对于B,考虑线面垂直的判定定理及面面垂直的性质定理;对于C,考虑面面垂直的判定定理;对于D,考虑空间两条直线的位置关系及平行公理.【题目详解】选项A中,除平行外,还有异面的位置关系,则A不正确;选项B中,与的位置关系有相交、平行、在内三种,则B不正确;选项C中,由,设经过的平面与相交,交线为,则,又,故,又,所以,则C正确;选项D中,与的位置关系还有相交和异面,则D不正确;故选C.【题目点拨】该题考查的是有关立体几何问题,涉及到的知识点有空间直线与平面的位置关系,面面平行的性质,线面垂直的判定,面面垂直的判定和性质,属于简单题目.3、B【解题分析】
甲乙两人捆绑一起作为一个人与其他2人全排列,内部2人全排列.【题目详解】因为甲乙两人必须相邻,看成一个整体,所以甲乙两人必须相邻的排法有种,故选:B.【题目点拨】本题考查排列问题,相邻问题用捆绑法求解.4、A【解题分析】
由三视图可知,该几何体是一个三棱柱截掉两个三棱锥,利用所给数据,求出三棱柱与三棱锥的体积,从而可得结果.【题目详解】由三视图可知,该几何体是一个三棱柱截掉两个三棱锥,画出几何体的直观图,如图,把几何体补形为一个直三棱柱,由三视图的性质可知三棱柱的底面面积,高,所以,,所以,几何体的体积为.故选A.【题目点拨】本题利用空间几何体的三视图重点考查学生的空间想象能力和抽象思维能力,属于难题.三视图问题是考查学生空间想象能力最常见题型,也是高考热点.观察三视图并将其“翻译”成直观图是解题的关键,不但要注意三视图的三要素“高平齐,长对正,宽相等”,还要特别注意实线与虚线以及相同图形的不同位置对几何体直观图的影响,对简单组合体三视图问题,先看俯视图确定底面的形状,根据正视图和侧视图,确定组合体的形状.5、B【解题分析】将圆分组:第一组:○●,有个圆;第二组:○○●,有个圆;第三组:○○○●,有个,…,每组圆的总个数构成了一个等差数列,前组圆的总个数为,令,解得,即包含整组,故含有●的个数是个,故选B.【方法点睛】本题考查等差数列的求和公式及归纳推理,属于中档题.归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目的归纳和图形变化规律的归纳.6、A【解题分析】分析:由已知条件利用离散型随机变量的数学期望计算公式求出a,进而求出,由此即可求出答案.详解:是离散型随机变量,,,,由已知得,解得,,.故选:A.点睛:本题考查离散型随机变量的方差的求法,是基础题,解题时要认真审题,注意离散型随机变量的数学期望和方差计算公式的合理运用.7、A【解题分析】
由求出,进而,由此求出.【题目详解】解:因为,,,所以,解得或(舍),由,所以.故选:A.【题目点拨】本题考查概率的求法,考查二项分布、正态分布等基础知识,考查推理论证能力、运算求解能力,是基础题.8、C【解题分析】
试题分析:由于垂直,不妨设,,,则,,表示到原点的距离,表示圆心,为半径的圆,因此的最大值,故答案为C.考点:平面向量数量积的运算.9、D【解题分析】
先把曲线,的极坐标方程和参数方程转化为直角坐标方程和一般方程,若与有且只有一个公共点可转化为直线和半圆有一个公共点,数形结合讨论a的范围即得解.【题目详解】因为曲线的极坐标方程为即故曲线的直角坐标方程为:.消去参数可得曲线的一般方程为:,由于,故如图所示,若与有且只有一个公共点,直线与半圆相切,或者截距当直线与半圆相切时由于为上半圆,故综上:实数的取值范围是或故选:D【题目点拨】本题考查了极坐标、参数方程与直角坐标方程、一般方程的互化,以及直线和圆的位置关系,考查了学生数形结合,数学运算的能力,属于中档题.10、A【解题分析】试题分析:由原函数图像可知函数单调性先增后减再增再减,所以导数值先正后负再正再负,只有A正确考点:函数导数与单调性及函数图像11、B【解题分析】
根据抛物线定义得,即可解得结果.【题目详解】因为,所以.故选B【题目点拨】本题考查抛物线定义,考查基本分析求解能力,属基础题.12、A【解题分析】分析:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,利用向量法能求出异面直线AD1与DB1所成角的余弦值.详解:以D为原点,DA为x轴,DC为y轴,DD1为z轴,建立空间直角坐标系,∵在长方体ABCD﹣A1B1C1D1中,AB=BC=1,AA1=2,∴A(1,0,0),D1(0,0,2),D(0,0,0),B1(1,1,2),=(﹣1,0,2),=(1,1,2),设异面直线AD1与DB1所成角为θ,则cosθ=∴异面直线AD1与DB1所成角的余弦值为.故答案为:A.点睛:(1)本题主要考查异面直线所成的角的向量求法,意在考查学生对该知识的掌握水平和分析转化能力.(2)异面直线所成的角的常见求法有两种,方法一:(几何法)找作(平移法、补形法)证(定义)指求(解三角形);方法二:(向量法),其中是异面直线所成的角,分别是直线的方向向量.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
令分别代入等式的两边,得到两个方程,再求值.【题目详解】令得:,令得:,.【题目点拨】赋值法是求解二项式定理有关问题的常用方法.14、【解题分析】
利用点到直线的距离公式计算出焦点到渐近线的距离,然后根据对应距离等于焦距的求解出的值,即可得到双曲线的渐近线方程.【题目详解】因为焦点到渐近线的距离,所以,所以,所以,所以渐近线方程为:.故答案为:.【题目点拨】本题考查双曲线渐近线方程的求解,难度一般.双曲线的焦点到渐近线的距离等于虚轴长度的一半.15、①④⑤【解题分析】
理解新定义的意义,借助导数的几何意义逐一进行判断推理,即可得到答案。【题目详解】对于①,,所以是曲线在点处的切线,画图可知曲线在点附近位于直线的两侧,①正确;对于②,因为,所以不是曲线:在点处的切线,②错误;对于③,,,在的切线为,画图可知曲线在点附近位于直线的同侧,③错误;对于④,,在点处的切线为,画图可知曲线:在点附近位于直线的两侧,④正确;对于⑤,,,在点处的切线为,图可知曲线:在点附近位于直线的两侧,⑤正确.【题目点拨】本题以新定义的形式对曲线在某点处的切线的几何意义进行全方位的考查,解题的关键是已知切线方程求出切点,并对初等函数的图像熟悉,属于中档题。16、.【解题分析】分析:先分离常数,然后根据二次函数最值求解即可.详解:由题可得:故答案为.点睛:考查函数的值域,对原式得正确分离常数是解题关键,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)的极坐标方程为.的极坐标方程为.(2)【解题分析】
(1)倾斜角为的直线经过坐标原点,可以直接写出;利用,把曲线的参数方程化为普通方程,然后再利用,把普通方程化成极坐标方程;(2)设,,则,,已知,所以有,运用二角差的正弦公式,可以得到,根据倾斜角的范围,可以求出值.【题目详解】解:(1)因为经过坐标原点,倾斜角为,故的极坐标方程为.的普通方程为,可得的极坐标方程为.(2)设,,则,.所以.由题设,因为,所以.【题目点拨】本题考查了已知曲线的参数方程化成极坐标方程.重点考查了极坐标下求两点的距离.18、(1)(2)(3)【解题分析】本题考查了有条件的概率的求法,做题时要认真分析,找到正确方法.(1)因为有5件是次品,第一次抽到理科试题,有3中可能,试题共有5件,(2)因为是不放回的从中依次抽取2件,所以第一次抽到理科题有5种可能,第二次抽到理科题有4种可能,第一次和第二次都抽到理科题有6种可能,总情况是先从5件中任抽一件,再从剩下的4件中任抽一件,所以有20种可能,再令两者相除即可.(3)因为在第1次抽到理科题的条件下,第2次抽到文科题的概率为(1);……….5分(2);………5分(3).……….5分19、(Ⅰ)(Ⅱ)【解题分析】
(1)求出函数的导数,计算f(1),f′(1)的值,写出切线方程即可(2)求出函数的导数,根据函数的单调性求出a的范围即可.【题目详解】(1)当时,,所以,
所以,又,
所以曲线在点处的切线方程为;
(2)因为函数f(x)在[1,3]上是减函数,
所以在[1,3]上恒成立,令,则,解得,故.所以实数的取值范围.【题目点拨】本题主要考查了函数的单调性,函数的最值,导数的应用,恒成立问题,属于中档题.20、(1),(2)【解题分析】
(1)利用向量的数量积和二倍角公式化简得,故可求其周期与单调性;(2)根据图像过得到,故可求得的大小,再根据数量积得到的乘积,最后结合余弦定理和构建关于的方程即可.【题目详解】(1),最小正周期:,由得,所以的单调递增区间为;(2)由可得:,所以.又因为成等差数列,所以而,.21、(1)证明见解析;(2)【解题分析】
(1)取的中点,连结、,推导出四边形是平行四边形,从而,由此能证明平面.(2)推导出,由,得,再推导出,,从而平面,,,,进而平面,连结,,则就是直线与平面所成角,由此能求出直线与平面所成角的余弦值.【题目详解】解:(1)证明:取的中点,连结、,是的中点,,且,,,,且,四边形是平行四边形,,又平面,平面.(2)解:,是等腰三角形,,又,,平面,平面
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度工程建设项目协议范本
- 2024年商用经营权租赁协议
- 7.5相对论时空观与牛顿力学的局限性(含答案)-2022-2023学年高一物理同步精讲义(人教2019必修第二册 )
- 2024年国际货物运输销售协议模板
- 儿童抚养权转移协议模板2024年
- 2024年无房产证私房买卖协议范本
- 2024年度个人汽车租赁协议范本
- 2024年酒吧业主权益转让协议
- BF2024年二手房销售协议模板
- 2024年度龙湖房地产开发建设协议
- 北京市商业地产市场细分研究
- 2023-2024学年重庆市大足区八年级(上)期末数学试卷(含解析)
- 肺结节科普知识宣讲
- 网络直播营销
- 2024年节能减排培训资料
- 2024传染病预防ppt课件完整版
- 2024年华融实业投资管理有限公司招聘笔试参考题库含答案解析
- 2024年1月普通高等学校招生全国统一考试适应性测试(九省联考)历史试题(适用地区:贵州)含解析
- 《宽容待人 正确交往》班会课件
- HSK五级必过考前辅导课件
- 小儿胃肠功能紊乱护理查房课件
评论
0/150
提交评论