版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
安徽省阜阳地区2023年九年级数学第一学期期末教学质量检测试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题(每小题3分,共30分)1.抛物线y=(x﹣4)2﹣5的顶点坐标和开口方向分别是()A.(4,﹣5),开口向上 B.(4,﹣5),开口向下C.(﹣4,﹣5),开口向上 D.(﹣4,﹣5),开口向下2.如果关于x的分式方程有负分数解,且关于x的不等式组的解集为x<-2,那么符合条件的所有整数a的积是()A.-3 B.0 C.3 D.93.已知:不在同一直线上的三点A,B,C求作:⊙O,使它经过点A,B,C作法:如图,(1)连接AB,作线段AB的垂直平分线DE;(2)连接BC,作线段BC的垂直平分线FG,交DE于点O;(3)以O为圆心,OB长为半径作⊙O.⊙O就是所求作的圆.根据以上作图过程及所作图形,下列结论中正确的是()A.连接AC,则点O是△ABC的内心 B.C.连接OA,OC,则OA,OC不是⊙的半径 D.若连接AC,则点O在线段AC的垂直平分线上4.如图所示的两个四边形相似,则α的度数是()A.60° B.75° C.87° D.120°5.关于抛物线y=x2+6x﹣8,下列选项结论正确的是()A.开口向下 B.抛物线过点(0,8)C.抛物线与x轴有两个交点 D.对称轴是直线x=36.下列说法正确的是()A.三角形的外心一定在三角形的外部 B.三角形的内心到三个顶点的距离相等C.外心和内心重合的三角形一定是等边三角形 D.直角三角形内心到两锐角顶点连线的夹角为125°7.如图,平面直角坐标系中,,反比例函数的图象分别与线段交于点,连接.若点关于的对称点恰好在上,则()A. B. C. D.8.如图,在Rt△ABC中,∠BAC=90°.将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C,点A在边B′C上,则∠B′的大小为()A.42° B.48°C.52° D.58°9.已知关于的方程有一个根是,则的值是()A.-1 B.0 C. D.110.以下给出的几何体中,主视图是矩形,俯视图是圆的是()A. B. C. D.二、填空题(每小题3分,共24分)11.如图,已知△ABC,AB=6,AC=5,D是边AB的中点,E是边AC上一点,∠ADE=∠C,∠BAC的平分线分别交DE、BC于点F、G,那么的值为__________.12.如图,点G是△ABC的重心,过点G作GE//BC,交AC于点E,连结GC.若△ABC的面积为1,则△GEC的面积为____________.13.点A(-1,m)和点B(-2,n)都在抛物线上,则m与n的大小关系为m______n(填“”或“”).14.如果反比例函数的图象经过点,则该反比例函数的解析式为____________15.若一元二次方程ax2﹣bx﹣2020=0有一根为x=﹣1,则a+b=_____.16.已知点P(a,b)在反比例函数y=的图象上,则ab=_____.17.抛物线(a>0)过点(﹣1,0)和点(0,﹣3),且顶点在第四象限,则a的取值范围是____.18.如图,任意转动正六边形转盘一次,当转盘停止转动时,指针指向大于3的数的概率是_____.三、解答题(共66分)19.(10分)如图,在平面直角坐标系中,的三个顶点坐标分别为,,(1)画出关于轴对称的,并写出点的坐标;(2)画出绕原点顺时针方向旋转后得到的,并写出点的坐标;(3)将平移得到,使点的对应点是,点的对应点时,点的对应点是,在坐标系中画出,并写出点,的坐标.20.(6分)如图,中,,,为内部一点,.求证:.21.(6分)如图,在边长为1的正方形网格中,△ABC的顶点均在格点上,把△ABC绕点C逆时针旋转90°后得到△A1B1C.(1)画出△A1B1C,;(2)求在旋转过程中,CA所扫过的面积.22.(8分)已知,如图,抛物线的顶点为,经过抛物线上的两点和的直线交抛物线的对称轴于点.(1)求抛物线的解析式和直线的解析式.(2)在抛物线上两点之间的部分(不包含两点),是否存在点,使得?若存在,求出点的坐标;若不存在,请说明理由.(3)若点在抛物线上,点在轴上,当以点为顶点的四边形是平行四边形时,直接写出满足条件的点的坐标.23.(8分)解方程:(1)3(2x+1)2=108(2)3x(x-1)=2-2x(3)x2-6x+9=(5-2x)2(4)x(2x-4)=5-8x24.(8分)如图,二次函数的图象经过点与.求a,b的值;点C是该二次函数图象上A,B两点之间的一动点,横坐标为,写出四边形OACB的面积S关于点C的横坐标x的函数表达式,并求S的最大值.25.(10分)如图,在△ABC中,∠C=90°,CB=6,CA=8,将△ABC绕点B顺时针旋转得到△DBE,使点C的对应点E恰好落在AB上,求线段AE的长.26.(10分)如图,四边形OABC是矩形,A、C分别在y轴、x轴上,且OA=6cm,OC=8cm,点P从点A开始以2cm/s的速度向B运动,点Q从点B开始以1cm/s的速度向C运动,设运动时间为t.(1)如图(1),当t为何值时,△BPQ的面积为4cm2?(2)当t为何值时,以B、P、Q为顶点的三角形与△ABC相似?(3)如图(2),在运动过程中的某一时刻,反比例函数y=的图象恰好同时经过P、Q两点,求这个反比例函数的解析式.
参考答案一、选择题(每小题3分,共30分)1、A【解析】根据y=a(x﹣h)2+k,a>0时图象开口向上,a<0时图象开口向下,顶点坐标是(h,k),对称轴是x=h,可得答案.【详解】由y=(x﹣4)2﹣5,得开口方向向上,顶点坐标(4,﹣5).故选:A.【点睛】本题考查了二次函数的性质,利用y=a(x﹣h)2+k,a>0时图象开口向上,在对称轴的左侧,y随x的增大而减小,在对称轴的右侧,y随x的增大而增大;a<0时图象开口向下,在对称轴的左侧,y随x的增大而增大,在对称轴的右侧,y随x的增大而减小,顶点坐标是(h,k),对称轴是x=h.2、D【解析】解:,由①得:x≤2a+4,由②得:x<﹣2,由不等式组的解集为x<﹣2,得到2a+4≥﹣2,即a≥﹣3,分式方程去分母得:a﹣3x﹣3=1﹣x,把a=﹣3代入整式方程得:﹣3x﹣6=1﹣x,即,符合题意;把a=﹣2代入整式方程得:﹣3x﹣5=1﹣x,即x=﹣3,不合题意;把a=﹣1代入整式方程得:﹣3x﹣4=1﹣x,即,符合题意;把a=0代入整式方程得:﹣3x﹣3=1﹣x,即x=﹣2,不合题意;把a=1代入整式方程得:﹣3x﹣2=1﹣x,即,符合题意;把a=2代入整式方程得:﹣3x﹣1=1﹣x,即x=1,不合题意;把a=3代入整式方程得:﹣3x=1﹣x,即,符合题意;把a=4代入整式方程得:﹣3x+1=1﹣x,即x=0,不合题意,∴符合条件的整数a取值为﹣3;﹣1;1;3,之积为1.故选D.3、D【分析】根据三角形的外心性质即可解题.【详解】A:连接AC,根据题意可知,点O是△ABC的外心,故A错误;B:根据题意无法证明,故B错误;C:连接OA,OC,则OA,OC是⊙的半径,故C错误D:若连接AC,则点O在线段AC的垂直平分线上,故D正确故答案为:D.【点睛】本题考查了三角形的确定即不在一条线上的三个点确定一个圆,这个圆是三角形的外接圆,o是三角形的外心.4、C【解析】根据相似多边形性质:对应角相等.【详解】由已知可得:α的度数是:360〫-60〫-75〫-138〫=87〫故选C【点睛】本题考核知识点:相似多边形.解题关键点:理解相似多边形性质.5、C【分析】根据△的符号,可判断图像与x轴的交点情况,根据二次项系数可判断开口方向,令函数式中x=0,可求图像与y轴的交点坐标,利用配方法可求图像的顶点坐标.【详解】解:A、抛物线y=x2+6x﹣8中a=1>0,则抛物线开口方向向上,故本选项不符合题意.B、x=0时,y=﹣8,抛物线与y轴交点坐标为(0,﹣8),故本选项不符合题意.C、△=62﹣4×1×(-8)>0,抛物线与x轴有两个交点,本选项符合题意.D、抛物线y=x2+6x﹣8=(x+3)2﹣17,则该抛物线的对称轴是直线x=﹣3,故本选项不符合题意.故选:C.【点睛】本题主要考查的是二次函数的开口,与y轴x轴的交点,对称轴等基本性质,掌握二次函数的基本性质是解题的关键.6、C【分析】分别利用三角形内心以及三角形外心的性质判断得出即可.【详解】A.因为只有钝角三角形的外心才在三角形的外部,锐角三角形的外心在三角形内部,直角三角形的外心在斜边上,该选项错误;B.三角形的内心到三角形的三边距离相等,该选项错误;C.若三角形的外心与内心重合,则这个三角形一定是等边三角形,该选项正确;D.如图,∠C=90,∠BAC+∠ABC分别是角∠BAC、∠ABC的平分线,∴∠OAB+∠OBA,∴∠AOB,该选项错误.故选:C【点睛】本题考查三角形的外接圆和外心及三角形的内切圆与内心,正确把握它们的区别是解题的关键.7、C【解析】根据,可得矩形的长和宽,易知点的横坐标,的纵坐标,由反比例函数的关系式,可用含有的代数式表示另外一个坐标,由三角形相似和对称,可用求出的长,然后把问题转化到三角形中,由勾股定理建立方程求出的值.【详解】过点作,垂足为,设点关于的对称点为,连接,如图所示:则,易证,,,在反比例函数的图象上,,在中,由勾股定理:即:解得:故选C.【点睛】此题综合利用轴对称的性质,相似三角形的性质,勾股定理以及反比例函数的图象和性质等知识,发现与的比是是解题的关键.8、A【解析】试题分析:∵在Rt△ABC中,∠BAC=90°,将Rt△ABC绕点C按逆时针方向旋转48°得到Rt△A′B′C′,∴∠A′=∠BAC=90°,∠ACA′=48°,∴∠B′=90°﹣∠ACA′=42°.故选A.考点:旋转的性质.9、A【分析】把b代入方程得到关于a,b的式子进行求解即可;【详解】把b代入中,得到,∵,∴两边同时除以b可得,∴.故答案选A.【点睛】本题主要考查了一元二次方程的解,准确利用等式的性质是解题的关键.10、D【分析】根据几何体的正面看得到的图形,可得答案.【详解】A、主视图是圆,俯视图是圆,故A不符合题意;B、主视图是矩形,俯视图是矩形,故B不符合题意;C、主视图是三角形,俯视图是圆,故C不符合题意;D、主视图是个矩形,俯视图是圆,故D符合题意;故选D.【点睛】本题考查了简单几何体的三视图,熟记简单几何的三视图是解题关键.二、填空题(每小题3分,共24分)11、【分析】由题中所给条件证明△ADF△ACG,可求出的值.【详解】解:在△ADF和△ACG中,AB=6,AC=5,D是边AB的中点AG是∠BAC的平分线,∴∠DAF=∠CAG∠ADE=∠C∴△ADF△ACG∴.故答案为.【点睛】本题考查了相似三角形的判定和性质,难度适中,需熟练掌握.12、【分析】如图,延长AG交BC于D,利用相似三角形的面积比等于相似比的平方解决问题即可.【详解】解:连接AG并延长交BC于点D,∴D为BC中点∴又∵∴∵G为重心∴∴∴,又∵∴.【点睛】本题考查三角形的重心,三角形的面积,相似三角形的判定和性质等知识,解题的关键是熟练掌握基本知识,属于中考常考题型.13、<.【解析】试题解析:当时,当时,故答案为:14、【分析】根据题意把点代入,反比例函数的解析式即可求出k值进而得出答案.【详解】解:设反比例函数的解析式为:,把点代入得,所以该反比例函数的解析式为:.故答案为:.【点睛】本题考查反比例函数的解析式,根据题意将点代入并求出k值是解题的关键.15、1【分析】由方程有一根为﹣1,将x=﹣1代入方程,整理后即可得到a+b的值.【详解】解:把x=﹣1代入一元二次方程ax2﹣bx﹣1=0得:a+b﹣1=0,即a+b=1.故答案为:1.【点睛】此题考查了一元二次方程的解的意义:能使一元二次方程左右两边相等的未知数的值是一元二次方程的解,关键是把方程的解代入方程.16、2【解析】接把点P(a,b)代入反比例函数y=即可得出结论.【详解】∵点P(a,b)在反比例函数y=的图象上,∴b=,∴ab=2,故答案为:2.【点睛】本题考查的是反比例函数图象上点的坐标特点,熟知反比例函数图象上各点的坐标一定适合此函数的解析式是解答此题的关键.17、0<a<3.【解析】试题解析:∵二次函数的图象与坐标轴分别交于点(0,−3)、(−1,0),∴c=−3,a−b+c=0,即b=a−3,∵顶点在第四象限,又∵a>0,∴b<0,∴b=a−3<0,即a<3,故故答案为点睛:二次函数的顶点坐标为:18、.【分析】根据概率的求法,找准两点:①全部情况的总数;②符合条件的情况数目;二者的比值就是其发生的概率.【详解】共个数,大于的数有个,(大于);故答案为.【点睛】本题考查概率的求法:如果一个事件有n种可能,而且这些事件的可能性相同,其中事件A出现m种结果,那么事件A的概率P(A)=.三、解答题(共66分)19、(1)图详见解析,;(2)图详见解析,;(3)图详见解析,【分析】(1)从三角形的各点向对称轴引垂线并延长相同单位得到各点的对应点,顺次连接即可,然后从坐标中读出各点的坐标;(2)让三角形的各顶点都绕点O顺时针旋转90°后得到对应点,顺次连接即可;(3)将平移得到,使点的对应点是,点的对应点是,点的对应点是(4,−1),在坐标系中画出,并写出点,的坐标;【详解】解:(1)(2)(3)如图所示:(1)根据图形结合坐标系可得:;(2)根据图形结合坐标系可得:点(3,1);(3)根据图形结合坐标系可得:,;【点睛】本题主要考查了作图-旋转变换,作图-轴对称变换,掌握作图-旋转变换,作图-轴对称变换是解题的关键.20、详见解析【分析】利用等式的性质判断出∠PBC=∠PAB,即可得出结论;【详解】解:,,又,,,又,.【点睛】此题主要考查了相似三角形的判定和性质,等腰直角三角形的性质,判断出∠PBC=∠PAB是解本题的关键.21、(1)见解析;(2).【分析】(1)根据旋转中心方向及角度找出点A、B的对应点A1、B1的位置,然后顺次连接即可.
(2)利用勾股定理求出AC的长,CA所扫过的面积等于扇形CAA1的面积,然后列式进行计算即可.【详解】解:(1)△A1B1C为所求作的图形:(2)∵AC=,∠ACA1=90°,∴在旋转过程中,CA所扫过的面积为:.【点睛】本题考查的知识点是作图-旋转变换,扇形面积的计算,解题的关键是熟练的掌握作图-旋转变换,扇形面积的计算.22、(1)抛物线的表达式为:,直线的表达式为:;(2)存在,理由见解析;点或或或.【解析】(1)二次函数表达式为:y=a(x-1)2+9,即可求解;
(2)S△DAC=2S△DCM,则,,即可求解;
(3)分AM是平行四边形的一条边、AM是平行四边形的对角线两种情况,分别求解即可.【详解】解:(1)二次函数表达式为:,将点的坐标代入上式并解得:,故抛物线的表达式为:…①,则点,将点的坐标代入一次函数表达式并解得:直线的表达式为:;(2)存在,理由:二次函数对称轴为:,则点,过点作轴的平行线交于点,设点,点,∵,则,解得:或5(舍去5),故点;(3)设点、点,,①当是平行四边形的一条边时,点向左平移4个单位向下平移16个单位得到,同理,点向左平移4个单位向下平移16个单位为,即为点,即:,,而,解得:或﹣4,故点或;②当是平行四边形的对角线时,由中点公式得:,,而,解得:,故点或;综上,点或或或.【点睛】本题考查的是二次函数综合运用,涉及到一次函数、平行四边形性质、图形的面积计算等,其中(3),要注意分类求解,避免遗漏.23、(1)x1=,x2=;(2)x1=1,x2=;(3)x1=,x2=2;(4)x1=,x2=【分析】(1)两边同时除以3,再用直接开平方法解得;(2)移项,方程左边可以提取公因式(x-1),利用因式分解法求解得;(3)先把方程化为两个完全平式的形式,再用因式分解法求出x的值即可.(4)方程整理为一般形式,计算出根的判别式的值大于0,代入求根公式即可求出解;【详解】解:(1)两边同时除以3得:(2x+1)2=36,开平方得:2x+1=±6,x1=,x2=;(2)移项得,3x(x-1)-2+2x=0,
因式分解得,(x-1)(3x+2)=0,
解得,x1=1,x2=;(3)因式分解得:(x-3)2=(5-2x)2,
移项,得(x-3)2-(5-2x)2=0,
因式分解得(x-3-5+2x)(x-3+5-2x)=0,
(3x-8)(-x+2)=0,
解得x1=,x2=2;(4)x(2x-4)=5-8x,
方程整理得:2x2+4x-5=0,
这里a=2,b=4,c=-5,
∵△=16+40=56,∴x=,则x1=,x2=.【点睛】本题考查的是解一元二次方程,熟知用直接开平方法、公式法及因式分解法解一元二次方程是解答此题的关键.24、(1)(2)最大值为1.
【分析】(1)将与代入,用待定系数法可求得;(2)过A作x轴的垂直,垂足为,连接CD、CB
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024货物进口合同(范本)
- 2024年广西路分公司一级干线运输合同
- 2024年度数据处理与分析合作协议
- 2024个人房产抵押合同
- 2024年基因治疗技术开发合同
- 2024年度智能医疗系统开发合同
- 2024年度建筑施工安全环保技术创新与应用合同
- 2024年废料交易合同标准版
- 2024年建筑基坑钻探检测合同
- 2024年度F公司太阳能发电设备安装合同
- 全国高职高专英语写作大赛
- 微机原理与接口技术8259A练习题及答案
- 正方体的11种展开图
- 第15章《分式》教材分析课件(32张)
- 商铺装修工程施工方案.
- 西门子RWD68说明书
- 形式发票样本(Proforma Invoice)
- 医院车辆加油卡管理制度
- 数独题目高级50题(后附答案)【最新】
- 问题线索办理呈批表
- 学、练、评一体化课堂模式下赛的两个问题与对策
评论
0/150
提交评论