安徽省砀山县2023-2024学年数学九上期末监测模拟试题含解析_第1页
安徽省砀山县2023-2024学年数学九上期末监测模拟试题含解析_第2页
安徽省砀山县2023-2024学年数学九上期末监测模拟试题含解析_第3页
安徽省砀山县2023-2024学年数学九上期末监测模拟试题含解析_第4页
安徽省砀山县2023-2024学年数学九上期末监测模拟试题含解析_第5页
已阅读5页,还剩18页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省砀山县2023-2024学年数学九上期末监测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题(每题4分,共48分)1.如图,一人站在两等高的路灯之间走动,为人在路灯照射下的影子,为人在路灯照射下的影子.当人从点走向点时两段影子之和的变化趋势是()A.先变长后变短 B.先变短后变长C.不变 D.先变短后变长再变短2.如果,那么锐角A的度数是()A.60° B.45° C.30° D.20°3.已知二次函数y=ax2+bx+c(a>0)经过点M(﹣1,2)和点N(1,﹣2),则下列说法错误的是()A.a+c=0B.无论a取何值,此二次函数图象与x轴必有两个交点,且函数图象截x轴所得的线段长度必大于2C.当函数在x<时,y随x的增大而减小D.当﹣1<m<n<0时,m+n<4.某超市一月份的营业额为200万元,已知第一季度的总营业额共1000万元,如果平均每月增长率为x,则由题意列方程应为()A.200(1+x)2=1000B.200+200×2x=1000C.200+200×3x=1000D.200[1+(1+x)+(1+x)2]=10005.神舟十号飞船是我国“神州”系列飞船之一,每小时飞行约28000公里,将28000用科学记数法表示应为()A.2.8×103 B.28×103 C.2.8×104 D.0.28×1056.下列图形中,是相似形的是()A.所有平行四边形 B.所有矩形 C.所有菱形 D.所有正方形7.如图,AD∥BE∥CF,AB=3,BC=6,DE=2,则EF的值为()A.2 B.3 C.4 D.58.下列事件的概率,与“任意选个人,恰好同月过生日”这一事件的概率相等的是()A.任意选个人,恰好生肖相同 B.任意选个人,恰好同一天过生日C.任意掷枚骰子,恰好朝上的点数相同 D.任意掷枚硬币,恰好朝上的一面相同9.化简的结果是()A. B. C. D.10.实施新课改以来,某班学生经常采用“小组合作学习”的方式进行学习,学习委员小兵每周对各小组合作学习的情况进行了综合评分.下表是其中一周的统计数据:组别1234567分值90959088909285这组数据的中位数和众数分别是A.88,90 B.90,90 C.88,95 D.90,9511.如图,甲乙两楼相距30米,乙楼高度为36米,自甲楼顶A处看乙楼楼顶B处仰角为30°,则甲楼高度为()A.11米 B.(36﹣15)米 C.15米 D.(36﹣10)米12.要制作两个形状相同的三角形框架,其中一个三角形的三边长分别为,和,另一个三角形的最短边长为2.5cm,则它的最长边为()A.3cm B.4cm C.4.5cm D.5cm二、填空题(每题4分,共24分)13.布袋里有三个红球和两个白球,它们除了颜色外其他都相同,从布袋里摸出两个球,摸到两个红球的概率是________.14.如图,矩形纸片ABCD中,AB=8cm,AD=6cm,按下列步骤进行裁剪和拼图:第一步:如图①,在线段AD上任意取一点E,沿EB,EC剪下一个三角形纸片EBC(余下部分不再使用);第二步:如图②,沿三角形EBC的中位线GH将纸片剪成两部分,并在线段GH上任意取一点M,线段BC上任意取一点N,沿MN将梯形纸片GBCH剪成两部分;第三步:如图③,将MN左侧纸片绕G点按顺时针旋转180º,使线段GB与GE重合,将MN右侧纸片绕H点按逆时针方向旋转180º,使线段HC与HE重合,拼成一个与三角形纸片EBC面积相等的四边形纸片(裁剪和拼图过程均无缝且不重叠)则拼成的这个四边形纸片的周长的最大值为___cm.15.一个半径为5cm的球形容器内装有水,若水面所在圆的直径为8cm,则容器内水的高度为_____cm.16.如图,直角三角形的直角顶点在坐标原点,,若点在反比例函数的图象上,则经过点的反比例函数解析式为___;17.如图,正方形内接于,正方形的边长为,若在这个圆面上随意抛一粒豆子,则豆子落在正方形内的概率是_____________.18.在平面直角坐标系xoy中,直线(k为常数)与抛物线交于A,B两点,且A点在轴右侧,P点的坐标为(0,4)连接PA,PB.(1)△PAB的面积的最小值为____;(2)当时,=_______三、解答题(共78分)19.(8分)学生会要举办一个校园书画艺术展览会,为国庆献礼,小华和小刚准备将长AD为400cm,宽AB为130cm的矩形作品四周镶上彩色纸边装饰,如图所示,两人在设计时要求内外两个矩形相似,矩形作品面积是总面积的,他们一致认为上下彩色纸边要等宽,左右彩色纸边要等宽,这样效果最好,请你帮助他们设计彩色纸边宽度.20.(8分)在一个不透明的盒子里装有三个标记为1,2,3的小球(材质、形状、大小等完全相同),甲先从中随机取出一个小球,记下数字为后放回,同样的乙也从中随机取出一个小球,记下数字为,这样确定了点的坐标.(1)请用列表或画树状图的方法写出点所有可能的坐标;(2)求点在函数的图象上的概率.21.(8分)在一个不透明的袋子中装有红、黄、蓝三个小球,除颜色外无其它差别.从袋子中随机摸球三次,每次摸出一个球,记下颜色后不放回.请用列举法列出三次摸球的结果,并求出第三次摸出的球是红球的概率.22.(10分)如图,射线表示一艘轮船的航行路线,从到的走向为南偏东30°,在的南偏东60°方向上有一点,处到处的距离为200海里.(1)求点到航线的距离.(2)在航线上有一点.且,若轮船沿的速度为50海里/时,求轮船从处到处所用时间为多少小时.(参考数据:)23.(10分)随着中央电视台《朗读者》节目的播出,“朗读”为越来越多的同学所喜爱,西宁市某中学计划在全校开展“朗读”活动,为了了解同学们对这项活动的参与态度,随机对部分学生进行了一次调查,调查结果整理后,将这部分同学的态度划分为四个类别:.积极参与,.一定参与,.可以参与,.不参与.根据调查结果制作了如下不完整的统计表和统计图.学生参与“朗读”的态度统计表类别人数所占百分比18204合计请你根据以上信息,解答下列问题:(1)______,______,并将条形统计图补充完整;(2)该校有1500名学生,如果“不参与”的人数不超过150人时,“朗读”活动可以顺利开展,通过计算分析这次活动能否顺利开展?(3)“朗读”活动中,九年级一班比较优秀的四名同学恰好是两男两女,从中随机选取两人在班级进行朗读示范,试用画树状图法或列表法求所选两人都是女生的概率,并列出所有等可能的结果.24.(10分)如图,在平面直角坐标系中,△ABC的顶点坐标为A(﹣2,3),B(﹣3,2),C(﹣1,1).(1)若将△ABC向右平移3个单位长度,再向上平移1个单位长度,请画出平移后的△A1B1C1;(2)画出△A1B1C1绕原点顺时针旋90°后得到的△A2B2C2;(3)若△A′B′C′与△ABC是中心对称图形,则对称中心的坐标为.25.(12分)如图,是△ABC的外接圆,AB是的直径,CD是△ABC的高.(1)求证:△ACD∽△CBD;(2)若AD=2,CD=4,求BD的长.26.已知3是一元二次方程x2-2x+a=0的一个根,求a的值和方程的另一个根.

参考答案一、选择题(每题4分,共48分)1、C【分析】连接DF,由题意易得四边形CDFE为矩形.由DF∥GH,可得.又AB∥CD,得出,设=a,DF=b(a,b为常数),可得出,从而可以得出,结合可将DH用含a,b的式子表示出来,最后得出结果.【详解】解:连接DF,已知CD=EF,CD⊥EG,EF⊥EG,∴四边形CDFE为矩形.∴DF∥GH,∴又AB∥CD,∴.设=a,DF=b,∴,∴∴∴GH=,∵a,b的长是定值不变,∴当人从点走向点时两段影子之和不变.故选:C.【点睛】本题考查了相似三角形的应用:利用杆或直尺测量物体的高度就是利用杆或直尺的高(长)作为三角形的边,利用视点和盲区的知识构建相似三角形,用相似三角形对应边的比相等的性质求物体的高度.2、A【分析】根据特殊角的三角函数值即可求解.【详解】解:∵,∴锐角A的度数是60°,故选:A.【点睛】本题考查特殊角的三角函数值,掌握特殊角的三角函数值是解题的关键.3、C【分析】根据二次函数的图象和性质对各项进行判断即可.【详解】解:∵函数经过点M(﹣1,2)和点N(1,﹣2),∴a﹣b+c=2,a+b+c=﹣2,∴a+c=0,b=﹣2,∴A正确;∵c=﹣a,b=﹣2,∴y=ax2﹣2x﹣a,∴△=4+4a2>0,∴无论a为何值,函数图象与x轴必有两个交点,∵x1+x2=,x1x2=﹣1,∴|x1﹣x2|=2>2,∴B正确;二次函数y=ax2+bx+c(a>0)的对称轴x=﹣=,当a>0时,不能判定x<时,y随x的增大而减小;∴C错误;∵﹣1<m<n<0,a>0,∴m+n<0,>0,∴m+n<;∴D正确,故选:C.【点睛】本题考查了二次函数的问题,掌握二次函数的图象和性质是解题的关键.4、D【分析】根据增长率问题公式即可解决此题,二月为200(1+x),三月为200(1+x)2,三个月相加即得第一季度的营业额.【详解】解:∵一月份的营业额为200万元,平均每月增长率为x,∴二月份的营业额为200×(1+x),∴三月份的营业额为200×(1+x)×(1+x)=200×(1+x)2,∴可列方程为200+200×(1+x)+200×(1+x)2=1,即200[1+(1+x)+(1+x)2]=1.故选D.【点睛】此题考察增长率问题类一元二次方程的应用,注意:第一季度指一、二、三月的总和.5、C【解析】试题分析:28000=1.1×1.故选C.考点:科学记数法—表示较大的数.6、D【分析】根据对应角相等,对应边成比例的两个多边形相似,依次分析各项即可判断.【详解】所有的平行四边形、矩形、菱形均不一定是相似多边形,而所有的正方形都是相似多边形,故选D.【点睛】本题是判定多边形相似的基础应用题,难度一般,学生只需熟练掌握特殊四边形的性质即可轻松完成.7、C【分析】根据平行线分线段成比例定理即可得出答案.【详解】∵AD∥BE∥CF,∴.∵AB=3,BC=6,DE=2,∴,∴EF=1.故选C.【点睛】本题考查了平行线分线段成比例定理,掌握定理的内容是解题的关键.8、A【分析】根据概率的意义对各选项分析判断即可得解.【详解】任选人,恰好同月过生日的概率为,A任选人,恰好生肖相同的概率为,B任选人,恰好同一天过生日的概率为,C任意掷枚骰子,恰好朝上的点数相同的概率为,D任意掷枚硬币,恰好朝上的一面相同的概率为.故选:A.【点睛】本题考查了概率的意义,正确理解概率的含义是解决本题的关键.9、D【解析】将除法变为乘法,化简二次根式,再用乘法分配律展开计算即可.【详解】原式=×=×(+1)=2+.故选D.【点睛】本题主要考查二次根式的加减乘除混合运算,掌握二次根式的混合运算法则是解题关键.10、B【解析】中位数是一组数据从小到大(或从大到小)重新排列后,最中间的那个数(最中间两个数的平均数).由此将这组数据重新排序为85,88,1,1,1,92,95,∴中位数是按从小到大排列后第4个数为:1.众数是在一组数据中,出现次数最多的数据,这组数据中1出现三次,出现的次数最多,故这组数据的众数为1.故选B.11、D【分析】分析题意可得:过点A作AE⊥BD,交BD于点E;可构造Rt△ABE,利用已知条件可求BE;而乙楼高AC=ED=BD﹣BE.【详解】解:过点A作AE⊥BD,交BD于点E,在Rt△ABE中,AE=30米,∠BAE=30°,∴BE=30×tan30°=10(米),∴AC=ED=BD﹣BE=(36﹣10)(米).∴甲楼高为(36﹣10)米.故选D.【点睛】此题主要考查三角函数的应用,解题的关键是熟知特殊角的三角函数值.12、C【解析】根据相似三角形三边对应成比例进行求解即可得.【详解】设另一个三角形的最长边为xcm,由题意得5:2.5=9:x,解得:x=4.5,故选C.【点睛】本题考查了相似三角形的性质,熟知相似三角形对应边成比例是解题的关键.二、填空题(每题4分,共24分)13、【解析】应用列表法,求出从布袋里摸出两个球,摸到两个红球的概率是多少即可.【详解】解:

红1红2红3白1白2红1--红1红2红1红3红1白1红1白2红2红2红1--红2红3红2白1红2白2红3红3红1红3红2--红3白1红3白2白1白1红1白1红2白1红3--白1白2白2白2红1白2红2白2红3白2白1--∵从布袋里摸出两个球的方法一共有20种,摸到两个红球的方法有6种,∴摸到两个红球的概率是.

故答案为:.【点睛】此题主要考查了列表法与树状图法,要熟练掌握,解答此题的关键是要明确:列表的目的在于不重不漏地列举出所有可能的结果求出n,再从中选出符合事件A或B的结果数目m,求出概率.14、【分析】首先确定剪拼之后的四边形是个平行四边形,其周长大小取决于MN的大小.然后在矩形中探究MN的不同位置关系,得到其长度的最大值与最大值,从而问题解决.【详解】解:画出第三步剪拼之后的四边形M1N1N2M2的示意图,如答图1所示.图中,N1N2=EN1+EN2=NB+NC=BC,M1M2=M1G+GM+MH+M2H=2(GM+MH)=2GH=BC(三角形中位线定理),又∵M1M2∥N1N2,∴四边形M1N1N2M2是一个平行四边形,其周长为2N1N2+2M1N1=2BC+2MN.∵BC=6为定值,∴四边形的周长取决于MN的大小.如答图2所示,是剪拼之前的完整示意图,过G、H点作BC边的平行线,分别交AB、CD于P点、Q点,则四边形PBCQ是一个矩形,这个矩形是矩形ABCD的一半,∵M是线段PQ上的任意一点,N是线段BC上的任意一点,根据垂线段最短,得到MN的最小值为PQ与BC平行线之间的距离,即MN最小值为4;而MN的最大值等于矩形对角线的长度,即,四边形M1N1N2M2的周长=2BC+2MN=12+2MN,∴最大值为12+2×=12+.故答案为:12+.【点睛】此题通过图形的剪拼,考查了动手操作能力和空间想象能力,确定剪拼之后的图形,并且探究MN的不同位置关系得出四边形周长的最值是解题关键.15、2或1【分析】分两种情况:(1)容器内水的高度在球形容器的球心下面;(2)容器内水的高度在球形容器的球心上面;根据垂径定理和勾股定理计算即可求解.【详解】过O作OC⊥AB于C,∴AC=BC=AB=4cm.在Rt△OCA中,∵OA=5cm,则OC3(cm).分两种情况讨论:(1)容器内水的高度在球形容器的球心下面时,如图①,延长OC交⊙O于D,容器内水的高度为CD=OD﹣CO=5﹣3=2(cm);(2)容器内水的高度在球形容器的球心是上面时,如图②,延长CO交⊙O于D,容器内水的高度为CD=OD+CO=5+3=1(cm).则容器内水的高度为2cm或1cm.故答案为:2或1.【点睛】本题考查了垂径定理以及勾股定理,勾股定理:在任何一个直角三角形中,两条直角边长的平方之和一定等于斜边长的平方.如果直角三角形的两条直角边长分别是a,b,斜边长为c,那么a2+b2=c2.注意分类思想的应用.16、【解析】构造K字型相似模型,直接利用相似三角形的判定与性质得出,而由反比例性质可知S△AOD==3,即可得出答案.【详解】解:过点B作BC⊥x轴于点C,过点A作AD⊥x轴于点D,

∵∠BOA=90°,

∴∠BOC+∠AOD=90°,

∵∠AOD+∠OAD=90°,

∴∠BOC=∠OAD,

又∵∠BCO=∠ADO=90°,

∴△BCO∽△ODA,

∴,

∴,∴S△BCO=S△AOD

∵S△AOD===3,∴S△BCO=×3=1∵经过点B的反比例函数图象在第二象限,

故反比例函数解析式为:y=.

故答案为.【点睛】此题主要考查了相似三角形的判定与性质以及反比例函数数的性质,正确得出S△BOC=1是解题关键.17、【分析】在这个圆面上随意抛一粒豆子,落在圆内每一个地方是均等的,因此计算出正方形和圆的面积,利用几何概率的计算方法解答即可.【详解】解:因为正方形的边长为2cm,则对角线的长为cm,所以⊙O的半径为cm,直径为2cm,⊙O的面积为2πcm2;正方形的面积为4cm2因为豆子落在圆内每一个地方是均等的,所以P(豆子落在正方形ABCD内)=.故答案为:.【点睛】此题主要考查几何概率的意义:一般地,如果试验的基本事件为n,随机事件A所包含的基本事件数为m,我们就用来描述事件A出现的可能性大小,称它为事件A的概率,记作P(A),即有

P(A)=.18、16【分析】(1)设A(m,km),B(n,kn),联立解析式,利用根与系数的关系建立之间的关系,列出面积函数关系式,利用二次函数的性质求解最小值即可;(2)先证明平分得到,把转化为,利用两点间的距离公式再次转化,从而可得答案.【详解】解:(1)如图,设A(m,km),B(n,kn),其中m1,n1.得:即,∴∴当k=1时,△PAB面积有最小值,最小值为故答案为.(2)设设A(m,km),B(n,kn),其中m1,n1.得:即,∴设直线PA的解析式为y=ax+b,将P(1,4),A(m,km)代入得:,解得:,∴令y=1,得∴直线PA与x轴的交点坐标为.同理可得,直线PB的解析式为直线PB与x轴交点坐标为.∵∴直线PA、PB与x轴的交点关于y轴对称,即直线PA、PB关于y轴对称.平分,到的距离相等,而∴,过作轴于,过作轴于,则∴∴∵∴∴∴故答案为:【点睛】本题是代数几何综合题,难度很大.考查了二次函数与一次函数的基本性质,一元二次方程的根与系数的关系.相似三角形的判定与性质,角平分线的判定与性质,解答中首先得到基本结论,即PA、PB的对称性,正确解决本题的关键是打好数学基础,将平时所学知识融会贯通、灵活运用.三、解答题(共78分)19、上下彩色纸边宽为13cm,左右彩色纸边宽为1cm.【分析】由内外两个矩形相似可得,设A′B′=13x,根据矩形作品面积是总面积的列方程可求出x的值,进而可得答案.【详解】∵AB=130,AD=10,∴,∵内外两个矩形相似,∴,∴设A′B′=13x,则A′D′=1x,∵矩形作品面积是总面积的,∴,解得:x=±12,∵x=﹣12<0不合题意,舍去,∴x=12,∴上下彩色纸边宽为(13x﹣130)÷2=13,左右彩色纸边宽为(1x﹣10)÷2=1.答:上下彩色纸边宽为13cm,左右彩色纸边宽为1cm.【点睛】本题考查相似多边形的性质,相似多边形的对应角相等,对应边成比例;根据相似多边形的性质得出A′B′与A′D′的比是解题关键.20、(1)见解析;(2).【分析】(1)根据列表分与树形图法即可写出结果;

(2)把所有P点坐标代入函数解析式中即可求解.【详解】(1)树状图如下:

由树状图得,点P所有可能的坐标为:

(1,1)、(1,2)、(1,3)、(2,1)、(2,2)、(2,3)、(3,1)、(3,2)、(3,3);(2)把代入函数解析式,得,把代入函数解析式,得,把代入函数解析式,得,9个点中有(1,2)、(2,1)、(3,2)共3个点在该函数的图象上,所以.所以点在函数的图象上的概率为.【点睛】本题考查了表格法与树形图法求概率、二次函数图象上点的坐标特征,解决本题的关键是正确列出表格或画出树形图.21、.【分析】用列举法求得所有的等可能结果,然后根据概率公式进行计算.【详解】解:依题意,共有6中等可能结果,分别是(红,黄,蓝),(红,蓝,黄),(黄,红,蓝),(黄,蓝,红),(蓝,红,黄),(蓝,黄,红).所有结果发生的可能性都相等.其中第三次摸出的球是红球(记为事件)的结果有2种,∴.∴第三次摸出的球是红球的概率是.【点睛】本题考查列举法求概率,理解题意列举出所有的等可能结果是本题的解题关键.22、(1)100海里(2)约为1.956小时【分析】(1)过A作AH⊥MN于H.由方向角的定义可知∠QMB=30°,∠QMA=60°,那么∠NMA=∠QMA-∠QMB=30°.解直角△AMH中,得出AH=AM,问题得解;

(2)先根据直角三角形两锐角互余求出∠HAM=60°,由∠MAB=15°,得出∠HAB=∠HAM-∠MAB=45°,那么△AHB是等腰直角三角形,求出BH=AH距离,然后根据时间=路程÷速度即可求解.【详解】解:(1)如图,过作于.∵,∴在直角中,∵,,海里,∴海里.答:点到航线的距离为100海里.(2)在直角中,,由(1)可知,∵∴,∴,∴轮船从处到处所用时间约为小时.答:轮船从处到处所用时间约为1.956小时.【点睛】本题考查了解直角三角形的应用-方向角问题,含30°角的直角三角形的性质,等腰直角三角形的判定与性质,直角三角形两锐角互余的性质,准确作出辅助线构造直角三角形是解题的关键.23、(1),8,补图详见解析;(2)这次活动能顺利开展;(3)(两人都是女生)【分析】(1)先用20除以40%求出样本容量,然后求出a,m的值,并补全条形统计图即可;(2)先求出b的值,用b的值乘以1500,然后把计算的结果与150进行大小比较,则可判断这次活动能否顺利开展;(3)画树状图展示所有12种等可能的结果数,找出所选两人都是女生的结果数为2,然后根据概率公式计算.【详解】解:(1))20÷40%=50人,a=18÷50×

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论