版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省义乌市七校联考九年级数学第一学期期末统考试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题(每题4分,共48分)1.如图,在平面直角坐标系内,四边形ABCD为菱形,点A,B的坐标分别为(﹣2,0),(0,﹣1),点C,D分别在坐标轴上,则菱形ABCD的周长等于()A. B.4 C.4 D.202.用配方法解方程时,原方程应变形为()A. B. C. D.3.已知,二次函数y=ax2+bx+c的图象上部分点的横坐标x与纵坐标y的对应值如表格所示,那么它的图象与x轴的另一个交点坐标是()x…-1013…y…0343…A.(2,0) B.(3,0) C.(4,0) D.(5,0)4.如图,在△ABC中,点D、E分别在边BA、CA的延长线上,=2,那么下列条件中能判断DE∥BC的是()A. B. C. D.5.下列事件为必然事件的是()A.打开电视机,它正在播广告B.a取任一个实数,代数式a2+1的值都大于0C.明天太阳从西方升起D.抛掷一枚硬币,一定正面朝上6.将抛物线向上平移1个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为()A. B. C. D.7.下列式子中表示是的反比例函数的是()A. B. C. D.8.如图,直线与双曲线交于、两点,过点作轴,垂足为,连接,若,则的值是()A.2 B.4 C.-2 D.-49.⊙O的半径为8,圆心O到直线l的距离为4,则直线l与⊙O的位置关系是A.相切 B.相交 C.相离 D.不能确定10.△ABC中,∠C=Rt∠,AC=3,BC=4,以点C为圆心,CA为半径的圆与AB、BC分别交于点E、D,则AE的长为()A. B. C. D.11.某校准备修建一个面积为200平方米的矩形活动场地,它的长比宽多12米,设场地的宽为x米,根据题意可列方程为()A.x(x﹣12)=200 B.2x+2(x﹣12)=200C.x(x+12)=200 D.2x+2(x+12)=20012.已知如图,中,,点在边上,且,则的度数是().A. B. C. D.二、填空题(每题4分,共24分)13.如图是某几何体的三视图及相关数据,则该几何体的侧面积是_____.14.等腰三角形的底角为15°,腰长为20cm,则此三角形的面积为.15.如图,直线x=2与反比例函数和的图象分别交于A、B两点,若点P是y轴上任意一点,则△PAB的面积是_____.16.如图,OA、OB是⊙O的半径,CA、CB是⊙O的弦,∠ACB=35°,OA=2,则图中阴影部分的面积为_____.(结果保留π)17.如图所示,已知:点,,.在内依次作等边三角形,使一边在轴上,另一个顶点在边上,作出的等边三角形分别是第1个,第2个,第3个,…,则第个等边三角形的周长等于.18.已知:如图,△ABC的面积为12,点D、E分别是边AB、AC的中点,则四边形BCED的面积为_____.三、解答题(共78分)19.(8分)测量计算是日常生活中常见的问题,如图,建筑物BC的屋顶有一根旗杆AB,从地面上D点处观测旗杆顶点A的仰角为50°,观测旗杆底部B点的仰角为45°(参考数据:sin50°≈0.8,tan50°≈1.2).(1)若已知CD=20米,求建筑物BC的高度;(2)若已知旗杆的高度AB=5米,求建筑物BC的高度.20.(8分)某公司计划购买若干台电脑,现从两家商场了解到同一种型号的电脑报价均为元,并且多买都有一定的优惠.各商场的优惠条件如下:甲商场优惠条件:第一台按原价收费,其余的每台优惠;乙商场优惠条件:每台优惠.设公司购买台电脑,选择甲商场时,所需费用为元,选择乙商场时,所需费用为元,请分别求出与之间的关系式.什么情况下,两家商场的收费相同?什么情况下,到甲商场购买更优惠?什么情况下,到乙商场购买更优惠?现在因为急需,计划从甲乙两商场一共买入台某品牌的电脑,其中从甲商场购买台电脑.已知甲商场的运费为每台元,乙商场的运费为每台元,设总运费为元,在甲商场的电脑库存只有台的情况下,怎样购买,总运费最少?最少运费是多少?21.(8分)如图,是经过某种变换得到的图形,点与点,点与点,点与点分别是对应点,观察点与点的坐标之间的关系,解答下列问题:分别写出点与点,点与点,点与点的坐标,并说说对应点的坐标有哪些特征;若点与点也是通过上述变换得到的对应点,求、的值.22.(10分)已知关于x的一元二次方程有两个不相等的实数根,且为正整数,求的值.23.(10分)在平面内,给定不在同一直线上的点A,B,C,如图所示.点O到点A,B,C的距离均等于a(a为常数),到点O的距离等于a的所有点组成图形G,的平分线交图形G于点D,连接AD,CD.(1)求证:AD=CD;(2)过点D作DEBA,垂足为E,作DFBC,垂足为F,延长DF交图形G于点M,连接CM.若AD=CM,求直线DE与图形G的公共点个数.24.(10分)如图,AB是的直径,点C、D在上,且AD平分,过点D作AC的垂线,与AC的延长线相交于E,与AB的延长线相交于点F,G为AB的下半圆弧的中点,DG交AB于H,连接DB、GB.证明EF是的切线;求证:;已知圆的半径,,求GH的长.25.(12分)如图,在平面直角坐标系中,抛物线与轴交于,两点(点在点的左侧),与轴交于点,对称轴与轴交于点,点在抛物线上.(1)求直线的解析式.(2)点为直线下方抛物线上的一点,连接,.当的面积最大时,连接,,点是线段的中点,点是线段上的一点,点是线段上的一点,求的最小值.(3)点是线段的中点,将抛物线与轴正方向平移得到新抛物线,经过点,的顶点为点,在新抛物线的对称轴上,是否存在点,使得为等腰三角形?若存在,直接写出点的坐标;若不存在,请说明理由.26.沙坪坝正在创建全国文明城市,其中垃圾分类是一项重要的举措.现随机抽查了沙区部分小区住户12月份某周内“垃圾分类”的实施情况,并绘制成了以下两幅不完整的统计图,图中表示实施天数小于5天,表示实施天数等于5天,表示实施天数等于6天,表示实施天数等于7天.(1)求被抽查的总户数;(2)补全条形统计图;(3)求扇形统计图中的圆心角的度数.
参考答案一、选择题(每题4分,共48分)1、C【分析】根据题意和勾股定理可得AB长,再根据菱形的四条边都相等,即可求出菱形的周长.【详解】∵点A,B的坐标分别为(﹣2,0),(0,﹣1),∴OA=2,OB=1,∴,∴菱形ABCD的周长等于4AB=4.故选:C.【点睛】此题主要考查了菱形的性质,勾股定理以及坐标与图形的性质,得出AB的长是解题关键.2、A【分析】方程常数项移到右边,两边加上1变形即可得到结果.【详解】方程移项得:x2−2x=5,配方得:x2−2x+1=1,即(x−1)2=1.故选:A.【点睛】此题考查了解一元二次方程−配方法,熟练掌握完全平方公式是解本题的关键.3、C【分析】根据(0,3)、(3,3)两点求得对称轴,再利用对称性解答即可.【详解】解:∵抛物线y=ax2+bx+c经过(0,3)、(3,3)两点,
∴对称轴x==1.5;
点(-1,0)关于对称轴对称点为(4,0),
因此它的图象与x轴的另一个交点坐标是(4,0).
故选C.【点睛】本题考查抛物线与x轴的交点、二次函数图象上点的坐标特征,解题的关键是明确题意,利用二次函数的性质解答.4、D【分析】只要证明,即可解决问题.【详解】解:A.,可得AE:AC=1:1,与已知不成比例,故不能判定B.,可得AC:AE=1:1,与已知不成比例,故不能判定;C选项与已知的,可得两组边对应成比例,但夹角不知是否相等,因此不一定能判定;D.,可得DE//BC,故选D.【点睛】本题考查平行线的判定,解题的关键是灵活运用所学知识解决问题,属于中考常考题型.5、B【分析】由题意直接根据事件发生的可能性大小进行判断即可.【详解】解:A、打开电视机,它正在播广告是随机事件;B、∵a2≥0,∴a2+1≥1,∴a取任一个实数,代数式a2+1的值都大于0是必然事件;C、明天太阳从西方升起是不可能事件;D、抛掷一枚硬币,一定正面朝上是随机事件;故选:B.【点睛】本题考查的是必然事件、不可能事件、随机事件的概念.注意掌握必然事件指在一定条件下,一定发生的事件.不可能事件是指在一定条件下,一定不发生的事件,不确定事件即随机事件是指在一定条件下,可能发生也可能不发生的事件.6、B【分析】根据函数图象向上平移加,向右平移减,可得函数解析式.【详解】解:将抛物线向上平移1个单位长度,再向右平移3个单位长度后,得到的抛物线的解析式为:.故选:B.【点睛】本题考查了二次函数图象与几何变换,函数图象的平移规律是:左加右减,上加下减.7、D【解析】根据反比例函数的定义逐项分析即可.【详解】A.是一次函数,故不符合题意;B.二次函数,故不符合题意;C.不是反比例函数,故不符合题意;D.是反比例函数,符合题意;故选D.【点睛】本题考查了反比例函数的定义,一般地,形如(k为常数,k≠0)的函数叫做反比例函数.8、A【解析】由题意得:,又,则k的值即可求出.【详解】设,
直线与双曲线交于A、B两点,
,
,,
,
,则.
又由于反比例函数位于一三象限,,故.
故选A.【点睛】本题主要考查了反比例函数中k的几何意义,即过双曲线上任意一点引x轴、y轴垂线,所得矩形面积为,是经常考查的一个知识点.9、B【分析】根据圆O的半径和圆心O到直线L的距离的大小,相交:d<r;相切:d=r;相离:d>r;即可选出答案.【详解】∵⊙O的半径为8,圆心O到直线L的距离为4,
∵8>4,即:d<r,
∴直线L与⊙O的位置关系是相交.
故选B.10、C【分析】在Rt△ABC中,由勾股定理可直接求得AB的长;过C作CM⊥AB,交AB于点M,由垂径定理可得M为AE的中点,在Rt△ACM中,根据勾股定理得AM的长,从而得到AE的长.【详解】解:在Rt△ABC中,
∵AC=3,BC=4,
∴AB==1.
过C作CM⊥AB,交AB于点M,如图所示,
由垂径定理可得M为AE的中点,
∵S△ABC=AC•BC=AB•CM,且AC=3,BC=4,AB=1,
∴CM=,
在Rt△ACM中,根据勾股定理得:AC2=AM2+CM2,即9=AM2+()2,
解得:AM=,
∴AE=2AM=.
故选:C.【点睛】本题考查的是垂径定理,根据题意作出辅助线,构造出直角三角形是解答此题的关键.11、C【解析】解:∵宽为x,长为x+12,∴x(x+12)=1.故选C.12、B【分析】根据等腰三角形性质和三角形内角和定理可列出方程求解.【详解】设∠A=x.
∵AD=BD,
∴∠ABD=∠A=x;
∵BD=BC,
∴∠BCD=∠BDC=∠ABD+∠A=2x;
∵AB=AC,
∴∠ABC=∠BCD=2x,
∴∠DBC=x;
∵x+2x+2x=180°,
∴x=36°,
∴∠A=36°故选:B【点睛】考核知识点:等腰三角形性质.熟练运用等腰三角形基本性质是关键.二、填空题(每题4分,共24分)13、15π.【解析】试题分析:由三视图可知这个几何体是母线长为5,高为4的圆锥,∴a=2=6,∴底面半径为3,∴侧面积为:π×5×3=15π.考点:1.三视图;2.圆锥的侧面积.14、100【解析】试题分析:先作出图象,根据含30°角的直角三角形的性质求出腰上的高,再根据三角形的面积公式即可求解.如图,∵∠B=∠C=15°∴∠CAD=30°∴CD=AC=10∴三角形的面积考点:本题考查的是三角形外角的性质,含30°角的直角三角形的性质点评:解答本题的关键是熟练掌握三角形的一个外角等于与它不相邻的两个内角的和;30°角的所对的直角边等于斜边的一半.15、.【详解】解:∵把x=1分别代入、,得y=1、y=,∴A(1,1),B(1,).∴.∵P为y轴上的任意一点,∴点P到直线BC的距离为1.∴△PAB的面积.故答案为:.16、【分析】利用扇形的面积公式计算即可.【详解】∵∠AOB=2∠ACB=70°,∴S扇形OAB==,故答案为.【点睛】本题主要考查扇形的面积公式,求出扇形的圆心角是解题的关键.17、【解析】∵OB=,OC=1,∴BC=2,∴∠OBC=30°,∠OCB=60°.而△AA1B1为等边三角形,∠A1AB1=60°,∴∠COA1=30°,则∠CA1O=90°.在Rt△CAA1中,AA1=OC=,同理得:B1A2=A1B1=,依此类推,第n个等边三角形的边长等于.第n个等边三角形的周长等于.18、1【解析】设四边形BCED的面积为x,则S△ADE=12﹣x,由题意知DE∥BC且DE=BC,从而得,据此建立关于x的方程,解之可得.【详解】设四边形BCED的面积为x,则S△ADE=12﹣x,∵点D、E分别是边AB、AC的中点,∴DE是△ABC的中位线,∴DE∥BC,且DE=BC,∴△ADE∽△ABC,则=,即,解得:x=1,即四边形BCED的面积为1,故答案为1.【点睛】本题主要考查相似三角形的判定与性质,解题的关键是掌握中位线定理及相似三角形的面积比等于相似比的平方的性质.三、解答题(共78分)19、(1)20米;(2)25米.【分析】(1)∠BDC=45°,可得DC=BC=20m,;(2)设DC=BC=xm,可得tan50°=≈1.2,解得x的值即可得建筑物BC的高.【详解】解:(1)∵∠BDC=45°,∴DC=BC=20m,答:建筑物BC的高度为20m;(2)设DC=BC=xm,根据题意可得:tan50°=≈1.2,解得:x=25,答:建筑物BC的高度为25m.【点睛】本题考查解直角三角形的应用.20、(1),;(2)当购买台时,两家商场的收费相同;当购买电脑台数大于时,甲商场购买更优惠;当购买电脑台数小于时,乙商场购买更优惠;(3)从甲商场买台,从乙商场买台时,总运费最少,最少运费是元.【分析】(1)根据“费用=每台费用台数”分别建立等式即可;(2)分别根据求解即可;(3)先列出运费与a的关系式,再根据函数的性质求出最值即可.【详解】(1)由题意得:;(或);(或)(2)设学校购买台电脑,若两家商场收费相同,则:,(或)解得即当购买台时,两家商场的收费相同;若到甲商场购买更优惠,则:解得即当购买电脑台数大于时,甲商场购买更优惠;若到乙商场购买更优惠,则:解得即当购买电脑台数小于时,乙商场购买更优惠;(3)由题意得,当取最大时,费用最小甲商场只有台取4,此时故从甲商场买台,从乙商场买台时,总运费最少,最少运费是元.【点睛】本题考查了一次函数的性质与应用,依据题意正确建立函数关系式是解题关键.21、(1)见解析;(2);;【解析】(1)在坐标系中直接读出点的坐标即可,再由所读数值发现坐标之间的特征;(2)由上问所得结论可求解a、b的值.【详解】由图象可知,点,点,点,点,点,点;对应点的坐标特征为:横坐标、纵坐标都互为相反数;由可知,,,解得,.【点睛】本题考查了图形在坐标系中的旋转,根据坐标系中点的坐标确定旋转特点,从而确定旋转前后对应坐标之间的关系是解题关键.22、【解析】根据方程有两个不相等的实数根知△>0,据此列出关于m的不等式,求出m的范围;
再根据m为正整数得出m的值即可。【详解】解:∵一元二次方程+3x+m=0有两个不相等的实数根,,∴,∵为正整数,∴.【点睛】本题考查了一元二次方程根的判别式,关键是掌握一元二次方程根的情况与判别式△的关系:(1)△>0⇔方程有两个不相等的实数根;(2)△=0⇔方程有两个相等的实数根;(3)△<0⇔方程没有实数根.23、依题意画出图形G为⊙O,如图所示,见解析;(1)证明见解析;(2)直线DE与图形G的公共点个数为1个.【解析】(1)根据线段垂直平分线的性质得出图形G为⊙O,再根据在同圆或等圆中相等的圆周角所对的弧相等得出;从而得出弦相等即可.(2)先根据HL得出△CDF≌△CMF,得出DF=MF,从而得出BC为弦DM的垂直平分线,根据圆心角和圆周角之间的关系定理得出∠ABC=∠COD,再证得DE为⊙O的切线即可【详解】如图所示,依题意画出图形G为⊙O,如图所示(1)证明:∵BD平分∠ABC,∴∠ABD=∠CBD,∴,∴AD=CD(2)解:∵AD=CD,AD=CM,∴CD=CM.∵DF⊥BC,∴∠DFC=∠CFM=90°在Rt△CDF和Rt△CMF中,∴△CDF≌△CMF(HL),∴DF=MF,∴BC为弦DM的垂直平分线∴BC为⊙O的直径,连接OD∵∠COD=2∠CBD,∠ABC=2∠CBD,∴∠ABC=∠COD,∴OD∥BE.又∵DE⊥BA,∴∠DEB=90°,∴∠ODE=90°,即OD⊥DE,∴DE为⊙O的切线.∴直线DE与图形G的公共点个数为1个.【点睛】本题考查了垂直平分线的性质,圆心角和圆周角之间的关系定理,切线的判定,熟练掌握相关的知识是解题的关键.24、(1)详见解析;(1)详见解析;(3).【解析】(1)由题意可证OD∥AE,且EF⊥AE,可得EF⊥OD,即EF是⊙O的切线;(1)由同弧所对的圆周角相等,可得∠DAB=∠DGB,由余角的性质可得∠DGB=∠BDF;(3)由题意可得∠BOG=90°,根据勾股定理可求GH的长.【详解】解:(1)证明:连接OD,∵OA=OD,∴∠OAD=∠ODA又∵AD平分∠BAC,∴∠OAD=∠CAD∴∠ODA=∠CAD,∴OD∥AE,又∵EF⊥AE,∴OD⊥EF,∴EF是⊙O的切线(1)∵AB是⊙O的直径,∴∠ADB=90°∴∠DAB+∠OBD=90°由(1)得,EF是⊙O的切线,∴∠ODF=90°∴∠BDF+∠ODB=90°∵OD=OB,∴∠ODB=∠OBD∴∠DAB=∠BDF又∠DAB=∠DGB∴∠DGB=∠BDF(3)连接OG,∵G是半圆弧中点,∴∠BOG=90°在Rt△OGH中,OG=5,OH=OB﹣BH=5﹣3=1.∴GH==.【点睛】本题考查了切线的判定和性质,角平分线的性质,勾股定理,圆周角定理等知识,熟练运用切线的判定和性质解决问题是本题的关键.25、(1);(2)3;(3)存在,点Q的坐标为或或或.【解析】【分析】(1)求出点A、B、E的坐标,设直线的解析式为,将点A和点E的坐标代入即可;(2)先求出直线CE解析式,过点P作轴,交CE与点F,设点P的坐标为,则点F,从而可表示出△EPC的面积,利用二次函数性质可求出x的值,从而得到点P的坐标,作点K关于CD和CP的对称点G、H,连接G、H交CD和CP与N、M,当点O、N、M、H在一条直线上时,KM+MN+NK有最小值,最小值=GH,利用勾股定理求出GH即可;(3)由平移后的抛物线经过点D,可得到点F的坐标,利用
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年塔吊施工安全防护合同
- 2024年度互联网金融服务平台合作合同
- 2024年度广告位代理销售合同(新媒体广告)
- 胶带分配器机器市场发展预测和趋势分析
- 贵金属制钱包市场发展现状调查及供需格局分析预测报告
- 2024年度旅游活动赞助合同:旅游赛事赞助与合作协议
- 2024年度智能硬件产品代理销售合同
- 2024年度储藏室保险服务合同
- 洁厕凝胶市场发展预测和趋势分析
- 2024年度办公楼智能化升级合同:某智能化公司与某办公楼物业管理公司关于智能化升级的合同
- 2023-2024学年广东省深圳市南山区八年级(上)期末英语试卷
- 2023~2024学年第一学期高一期中考试数学试题含答案
- 非遗漆扇扇子科普宣传
- GB/T 15822.1-2024无损检测磁粉检测第1部分:总则
- 2024广西专业技术人员继续教育公需科目参考答案(100分)
- MOOC 马克思主义民族理论与政策-广西民族大学 中国大学慕课答案
- 一种基于STM32的智能门锁系统的设计-毕业论文
- 音乐教师职业生涯发展报告
- (推荐)浅谈初中学生英语写作中存在的问题、原因及解决策略
- 七年级历史教案:林则徐的教学设计
- 水面垃圾自动打捞船的设计 (全套图纸)
评论
0/150
提交评论