2024届黑龙江省齐齐哈尔市八中高二数学第二学期期末复习检测试题含解析_第1页
2024届黑龙江省齐齐哈尔市八中高二数学第二学期期末复习检测试题含解析_第2页
2024届黑龙江省齐齐哈尔市八中高二数学第二学期期末复习检测试题含解析_第3页
2024届黑龙江省齐齐哈尔市八中高二数学第二学期期末复习检测试题含解析_第4页
2024届黑龙江省齐齐哈尔市八中高二数学第二学期期末复习检测试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届黑龙江省齐齐哈尔市八中高二数学第二学期期末复习检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.从中不放回地依次取个数,事件表示“第次取到的是奇数”,事件表示“第次取到的是奇数”,则()A.B.C.D.2.利用独立性检验的方法调查高中生的写作水平与离好阅读是否有关,随机询问120名高中生是否喜好阅读,利用2×2列联表,由计算可得K2=4.236P(K2≥k0)0.150.100.050.0250.0100.0050.001k02.0722.7063.8415.0246.6357.87910.828参照附表,可得正确的结论是()A.有95%的把握认为“写作水平与喜好阅读有关”B.有97.5%的把握认为“写作水平与喜好阅读有关”C.有95%的把握认为“写作水平与喜好阅读无关”D.有97.5%的把握认为“写作水平与喜好阅读无关”3.如图,网格纸上小正方形的边长为1,粗线画出的是某几何体的三视图,则此几何体各面中直角三角形的个数是()A.2 B.3 C.4 D.54.已知是空间中两条不同的直线,是两个不同的平面,有以下结论:①②③④.其中正确结论的个数是()A.0 B.1 C.2 D.35.在复平面内,复数(为虚数单位)对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限6.某研究性学习小组调查研究学生使用智能手机对学习的影响,部分统计数据如表(参考公式:,其中.)附表:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828则下列选项正确的是()A.有的把握认为使用智能手机对学习有影响B.有的把握认为使用智能手机对学习无影响C.有的把握认为使用智能手机对学习有影响D.有的把握认为使用智能手机对学习无影响7.已知矩形ABCD中,AB=2,BC=1,F为线段CD上一动点(不含端点),现将△ADF沿直线AF进行翻折,在翻折过程中不可能成立的是()A.存在某个位置,使直线AF与BD垂直 B.存在某个位置,使直线AD与BF垂直C.存在某个位置,使直线CF与DA垂直 D.存在某个位置,使直线AB与DF垂直8.若,则“复数的共轭复数在复平面内对应的点在第二象限”是“”()A.充分不必要条件 B.必要不充分条件 C.充要条件 D.既不充分也不必要条件9.已知满足,则()A. B. C. D.10.设为虚数单位,则复数()A. B. C. D.11.已知,为锐角,且,若,则的最大值为()A. B. C. D.12.在同一直角坐标系中,函数且的图象可能是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.甲、乙、丙三位同学被问到是否去过三个城市时,甲说:我去过的城市比乙多,但没去过城市;乙说:我没去过城市.丙说:我们三个去过同一城市.由此可判断乙去过的城市为__________14.二项式展开式中的常数项是______.15.已知函数,,若存在两切点,,,使得直线与函数和的图象均相切,则实数的取值范围是_________.16.设是虚数单位,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数的定义域为,值域是.(Ⅰ)求证:;(Ⅱ)求实数的取值范围.18.(12分)已知函数(1)解不等式;(2)若方程在区间有解,求实数的取值范围.19.(12分)已知是抛物线的焦点,是抛物线上一点,且.(1)求抛物线的方程;(2)直线与抛物线交于两点,若(为坐标原点),则直线是否会过某个定点?若是,求出该定点坐标,若不是,说明理由.20.(12分)如图,在四边形中,.(1)求的余弦值;(2)若,求的长.21.(12分)下表提供了某厂节能降耗技术改造后生产甲产品过程中记录的产量(吨)与相应的生产能耗(吨标准煤)的几组对照数据.34562.5344.5(1)请画出上表数据的散点图;(2)请根据上表提供的数据,用最小二乘法求出关于的线性回归方程.参考公式:22.(10分)从1、2、3、4、5五个数字中任意取出无重复的3个数字.(I)可以组成多少个三位数?(II)可以组成多少个比300大的偶数?(III)从所组成的三位数中任取一个,求该数字是大于300的奇数的概率.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】试题分析:由题意,,∴,故选D.考点:条件概率与独立事件.2、A【解题分析】

根据题意知观测值,对照临界值得出结论.【题目详解】利用独立性检验的方法求得,对照临界值得出:有95%的把握认为“写作水平与喜好阅读有关”.故选A项.【题目点拨】本题考查了独立性检验的应用问题,是基础题.3、C【解题分析】把三视图还原为原几何体为一个四棱锥,底面是边长为3的正方形,侧棱底面ABCD,四个侧面均为直角三角形,则此几何体各面中直角三角形的个数是4个,选C.4、B【解题分析】分析:根据直线与平面的位置关系的判定定理和性质定理,即可作出判定得到结论.详解:由题意,对于①中,若,则两平面可能是平行的,所以不正确;对于②中,若,只有当与相交时,才能得到,所以不正确;对于③中,若,根据线面垂直和面面垂直的判定定理,可得,所以是正确的;对于④中,若,所以是不正确的,综上可知,正确命题的个数只有一个,故选B.点睛:本题考查线面位置关系的判定与证明,熟练掌握空间中线面位置关系的定义、判定、几何特征是解答的关键,其中垂直、平行关系证明中应用转化与化归思想的常见类型:(1)证明线面、面面平行,需转化为证明线线平行;(2)证明线面垂直,需转化为证明线线垂直;(3)证明线线垂直,需转化为证明线面垂直.5、B【解题分析】

对复数进行整理化简,从得到其在复平面所对应的点,得到答案.【题目详解】复数,所以复数在复平面对应的点的坐标为,位于第二象限.故选:B.【题目点拨】本题考查复数的乘法运算,考查复数在复平面对应点所在象限,属于简单题.6、A【解题分析】分析:根据列联表中数据利用公式求得,与邻界值比较,即可得到结论.详解:根据卡方公式求得,,该研究小组有的把握认为中学生使用智能手机对学生有影响,故选A.点睛:独立性检验的一般步骤:(1)根据样本数据制成列联表;(2)根据公式计算的值;(3)查表比较与临界值的大小关系,作统计判断.7、C【解题分析】

连结BD,在中,可以作于O,并延长交CD于F,得到成立,得到A正确;由翻折中,保持不变,可得到B正确;根据翻折过程中,,可得到C错误;根据翻折过程中,保持不变,假设成立,得到平面ABD,结合题中条件,进而可得出结果.【题目详解】对于A,连结BD,在中,可以作于O,并延长交CD于F,则成立,翻折过程中,这个垂直关系保持不变,故A正确;对于B,在翻折过程中,保持不变,当时,有平面,从而,此时,AD=1,AB=2,BD=,故B正确;对于C,在翻折过程中,保持不变,若成立,则平面CDF,从而,AD=1,AC=,得CD=2,在翻折过程中,,即CD<2,所以,CD=2不成立,C不正确;对于D,在翻折过程中,保持不变,若成立,则平面ABD,从而,设此时,则BF=,BD=,只要,BD就存在,所以D正确选C.【题目点拨】本题主要考查空间中直线与直线的位置关系,熟记线面垂直的判定定理与性质定理即可,属于常考题型.8、C【解题分析】

先将复数化简成形式,得其共轭复数,通过对应的点在第二象限求出的取值范围,即可判断与的关系.【题目详解】,所以共轭复数,因为共轭复数在复平面内对应的点在第二象限所以,解得所以“复数的共轭复数在复平面内对应的点在第二象限”是“”充要条件,故选C【题目点拨】本题考查复数的基本运算与充要关系,解题的关键是先通过条件求出的取值范围,属于一般题.9、A【解题分析】,选A.10、D【解题分析】

由复数的乘除运算即可求得结果【题目详解】故选【题目点拨】本题主要考查了复数的除法运算,解题的关键是要掌握复数四则运算法则,属于基础题。11、B【解题分析】

把代入等式中,进行恒等变形,用表示,最后利用基本不等式,求出的最大值.【题目详解】,.因为为锐角,且,所以,,,(当且仅当时取等号),所以,因此的最大值为,故本题选B.【题目点拨】本题考查了三角恒等变形,考查了两角差的正切公式,考查了应用基本不等式求代数式最值问题.12、D【解题分析】

本题通过讨论的不同取值情况,分别讨论本题指数函数、对数函数的图象和,结合选项,判断得出正确结论.题目不难,注重重要知识、基础知识、逻辑推理能力的考查.【题目详解】当时,函数过定点且单调递减,则函数过定点且单调递增,函数过定点且单调递减,D选项符合;当时,函数过定点且单调递增,则函数过定点且单调递减,函数过定点且单调递增,各选项均不符合.综上,选D.【题目点拨】易出现的错误有,一是指数函数、对数函数的图象和性质掌握不熟,导致判断失误;二是不能通过讨论的不同取值范围,认识函数的单调性.二、填空题:本题共4小题,每小题5分,共20分。13、A【解题分析】试题分析:由乙说:我没去过C城市,则乙可能去过A城市或B城市,但甲说:我去过的城市比乙多,但没去过B城市,则乙只能是去过A,B中的任一个,再由丙说:我们三人去过同一城市,则由此可判断乙去过的城市为A考点:进行简单的合情推理14、【解题分析】

写出二项式展开式的通项,令的指数为零,求出参数的值,然后代入通项即可求出该二项式展开式中的常数项.【题目详解】二项式展开式的通项为,令,得,因此,该二项式展开式中的常数项为.故答案为:.【题目点拨】本题考查二项式展开式中常数项的求解,一般利用二项展开式通项中的指数为零来求解,考查运算求解能力,属于中等题.15、【解题分析】

利用导数求得点处的切线方程,联立方程组,根据判别式,令,得,构造新函数,利用导数求得函数的单调性与最值,即可求解.【题目详解】由题意,点在函数的图象上,令,则点,又由,则,所以切线方程为,即,联立方程组,整理得,则,令,整理得,且,构造函数,则,,可得当时,,函数单调递减,当时,,函数单调递增,所以,即在上恒成立,所以函数在单调递减,又由,所以,解得.【题目点拨】本题主要考查导数在函数中的综合应用,着重考查了转化与化归思想、逻辑推理能力与计算能力,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,求解曲线在某点处的切线方程;(2)利用导数求函数的单调区间,判断单调性与,以及函数单调性,求解参数;(3)利用导数求函数的最值(极值),解决函数的恒成立与有解问题,同时注意数形结合思想的应用.16、【解题分析】

根据复数的除法计算即可.【题目详解】.

故答案为:【题目点拨】本题主要考查了复数的除法运算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)见解析(Ⅱ).【解题分析】试题分析:(1)根据已知函数求出定义域,则为已知函数所求出的x的范围的子集,再利用所提供的值域得出m>1,n>1的要求,从而说明m>3;(2)根据复合函数的单调性法则,由于对数的底数0<a<1,以及的单调性判断出原函数f(x)在上为增函数,根据已知定义域和值域及函数的单调性,写出x值与y值的对应关系式,得出列方程组,把问题转化为一元二次方程存在两个大于3的实根问题,最后利用根的分布条件列出不等式组,解出a的范围.试题解析:(Ⅰ),又因为函数的定义域,可得或,而函数的值域为,由对数函数的性质知,(Ⅱ)在区间上递增,又因为即单调递减的函数.即有两个大于3的实数根,.【题目点拨】(1)处理有关集合的包含关系问题,无限数集一般使用数轴作为工具,可以直观画出集合的包含关系,常借助端点数值的大小关系满足集合的要求;(2)根据函数的单调性及函数的定义域和值域,可以得出自变量与函数值的对应关系,化归与转化思想是高考要求学生学会的一种数学思想,把一个陌生的问题通过转化,变为一个熟悉的问题去解决,本题把满足方程组要求的问题转化为一元二次方程的根的分布问题,很容易得到解决.18、(I);(II).【解题分析】

(1)根据,利用分类讨论便可得到最后解集;(2)根据方程在区间有解转化为函数和函数图象在区间上有交点,从而得解.【题目详解】(1)可化为10或或;2<x≤或或;不等式的解集为;(2)由题意:故方程在区间有解函数和函数图象在区间上有交点当时,【题目点拨】本题考查绝对知不等式的求解和应用,主要是利用分类讨论的方法去掉绝对值符号;关于方程解的问题直接用方程思想和数形结合转化为函数图像交点问题便可得解.19、(1)(2)见解析【解题分析】

(1)由抛物线的定义知得值即可求解(2)设的方程为:,代入,消去得的二次方程,向量坐标化结合韦达定理得,则定点可求【题目详解】(1)由抛物线的定义知,抛物线的方程为:(2)设的方程为:,代入有,设,则,,的方程为:,恒过点,【题目点拨】本题考查抛物线方程,直线与抛物线的位置关系,韦达定理的应用,向量运算,准确计算是关键,是中档题20、(1)(2)【解题分析】

(1)先利用余弦定理求出BC=2,再利用正弦定理求出,再求的余弦值;(2)先求出,再利用正弦定理求AD得解.【题目详解】解:(1)因为,所以,即,所以.由正弦定理得,所以,又因为,所以.(2)由(1)得,所以,所以,所以.【题目点拨】本题主要考查正弦定理余弦定理解三角形,意在考查学生对这些知识的理解掌握水平,属于基础题.21、(1)见解析(2)【解题分析】

(1)直接画出散点图得到答案.(2)根据数据和公式,得到计算得,,,直接计算到答案.【题目详解】(1)由题设所给数据,可得散点图如图所示.(2)由对照数据,计算得:,(吨),(吨).已知,所以,由最小二乘法确定的回归方程的系数为:,.因此所求的线性回归

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论