2024届山东省临沂市临沭县一中数学高二第二学期期末质量跟踪监视模拟试题含解析_第1页
2024届山东省临沂市临沭县一中数学高二第二学期期末质量跟踪监视模拟试题含解析_第2页
2024届山东省临沂市临沭县一中数学高二第二学期期末质量跟踪监视模拟试题含解析_第3页
2024届山东省临沂市临沭县一中数学高二第二学期期末质量跟踪监视模拟试题含解析_第4页
2024届山东省临沂市临沭县一中数学高二第二学期期末质量跟踪监视模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届山东省临沂市临沭县一中数学高二第二学期期末质量跟踪监视模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.体育课上,小红、小方、小强、小军四位同学都在进行足球、篮球、羽毛球、乒乓球等四项体自运动中的某一种,四人的运动项目各不相同,下面是关于他们各自的运动项目的一些判断:①小红没有踢足球,也没有打篮球;②小方没有打篮球,也没有打羽毛球;③如果小红没有打羽毛球,那么小军也没有踢足球;④小强没有踢足球,也没有打篮球.已知这些判断都是正确的,依据以上判断,请问小方同学的运动情况是()A.踢足球B.打篮球C.打羽毛球D.打乒乓球2.下列命题不正确的是()A.研究两个变量相关关系时,相关系数r为负数,说明两个变量线性负相关B.研究两个变量相关关系时,相关指数R2越大,说明回归方程拟合效果越好.C.命题“∀x∈R,cosx≤1”的否定命题为“∃x0∈R,cosx0>1”D.实数a,b,a>b成立的一个充分不必要条件是a3>b33.下图是一个算法流程图,则输出的x值为A.95 B.47 C.23 D.114.已知函数在区间上是增函数,且.若,则的取值范围是()A. B. C. D.5.连掷两次骰子得到的点数分别为和,记向量与向量的夹角为,则的概率是()A. B. C. D.6.已知集合,集合,则A. B. C. D.7.在数学兴趣课堂上,老师出了一道数学思考题,某小组的三人先独立思考完成,然后一起讨论.甲说:“我做错了!”乙对甲说:“你做对了!”丙说:“我也做错了!”老师看了他们三人的答案后说:“你们三人中有且只有一人做对了,有且只有一人说对了.”请问下列说法正确的是()A.乙做对了 B.甲说对了 C.乙说对了 D.甲做对了8.已知随机变量服从正态分布,若,则()A.0.16 B.0.32 C.0.68 D.0.849.若某几何体的三视图如图所示,则这个几何体的表面积是()A. B. C.19 D.10.把67化为二进制数为A.1100001(2) B.1000011(2)C.110000(2) D.1000111(2)11.高三要安排毕业晚会的4个音乐节目,2个舞蹈节目和1个曲艺节目的演出顺序,要求两个舞蹈节目不连排,则不同排法的种数是()A.1800 B.3600 C.4320 D.504012.用数学归纳法证明“…”时,由到时,不等试左边应添加的项是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若椭圆上的点到焦点的距离的最小值为5,最大值为15,则椭圆短轴长为____________.14.若函数为偶函数,则的值为______.15.某射手射击1次,击中目标的概率是0.9,他连续射击4次,且他各次射击是否击中目标相互之间没有影响.有下列结论:①他第3次击中目标的概率是0.9;②他恰好击中目标3次的概率是0.93×0.1;③他至少击中目标1次的概率是1-0.14④他恰好有连续2次击中目标的概率为3×0.93×0.1其中正确结论的序号是______16.直线分别与x轴,y轴交于A,B两点,点P在抛物线上,则面积的最小值为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在处的导数为0.(1)求的值和的最大值;(2)若实数,对任意,不等式恒成立,求的取值范围.18.(12分)《流浪地球》是由刘慈欣的科幻小说改编的电影,在2019年春节档上影,该片上影标志着中国电影科幻元年的到来;为了振救地球,延续百代子孙生存的希望,无数的人前仆后继,奋不顾身的精神激荡人心,催人奋进.某网络调查机构调查了大量观众的评分,得到如下统计表:评分12345678910频率0.030.020.020.030.040.050.080.150.210.36(1)求观众评分的平均数?(2)视频率为概率,若在评分大于等于8分的观众中随机地抽取1人,他的评分恰好是10分的概率是多少?(3)视频率为概率,在评分大于等于8分的观众中随机地抽取4人,用表示评分为10分的人数,求的分布列及数学期望.19.(12分)已知函数.若是的极值点.(1)求在上的最小值;(2)若不等式对任意都成立,其中为整数,为的函数,求的最大值.20.(12分)在直角坐标系中,曲线的参数方程为(为参数),在以坐标为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程,并指出曲线是什么曲线;(2)若直线与曲线相交于两点,,求的值.21.(12分)已知一家公司生产某种品牌服装的年固定成本为万元,每生产千件需另投入万元.设该公司一年内共生产该品牌服装千件并全部销售完,每千件的销售收入为万元,且.(1)写出年利润(万元)关于年产量(千件)的函数解析式;(2)年产量为多少千件时,该公司在这一品牌服装的生产中所获得利润最大?(注:年利润=年销售收入-年总成本)22.(10分)已知函数,其中.(1)求的单调递增区间;(2)当的图像刚好与轴相切时,设函数,其中,求证:存在极小值且该极小值小于.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】分析:由题意结合所给的逻辑关系进行推理论证即可.详解:由题意可知:小红、小方、小强都没有打篮球,故小军打篮球;则小军没有踢足球,且已知小红、小强都没有踢足球,故小方踢足球.本题选择A选项.点睛:本题主要考查学生的推理能力,意在考查学生的转化能力和计算求解能力.2、D【解题分析】

根据相关系数、相关指数的知识、全称命题的否定的知识,充分、必要条件的知识对四个选项逐一分析,由此得出命题不正确的选项.【题目详解】相关系数为负数,说明两个变量线性负相关,A选项正确.相关指数越大,回归方程拟合效果越好,B选项正确.根据全称命题的否定是特称命题的知识可知C选项正确.对于D选项,由于,所以是的充分必要条件,故D选项错误.所以选D.【题目点拨】本小题主要考查相关系数、相关指数的知识,考查全称命题的否定是特称命题,考查充要条件的判断,属于基础题.3、B【解题分析】运行程序,,判断是,,,判断是,,判断是,,判断是,,判断否,输出.4、C【解题分析】

由,得到为偶函数,再由是上的增函数,得到是上的减函数,根据,转化为,即可求解.【题目详解】由题意,因为,所以为偶函数,又因为是上的增函数,所以是上的减函数,又因为,所以,所以,解得,故选C.【题目点拨】本题主要考查了函数的奇偶性的应用,以及对称区间上的函数的单调性的应用,同时解答中涉及到对数函数的图象与性质的应用,着重考查了分析问题和解答问题的能力,属于中档试题.5、C【解题分析】

由,得出,计算出基本事件的总数以及事件所包含的基本事件数,然后利用古典概型的概率公式可计算出所求事件的概率.【题目详解】,,即,事件“”所包含的基本事件有:、、、、、、、、、、、、、、、、、、、、,共个,所有的基本事件数为,因此,事件“”的概率为.故选:C.【题目点拨】本题考查利用古典概型的概率公式计算事件的概率,解题的关键就是求出总的基本事件数和所求事件所包含的基本事件数,考查计算能力,属于中等题.6、D【解题分析】,,则,选D.7、B【解题分析】

分三种情况讨论:甲说法对、乙说法对、丙说法对,通过题意进行推理,可得出正确选项.【题目详解】分以下三种情况讨论:①甲的说法正确,则甲做错了,乙的说法错误,则甲做错了,丙的说法错误,则丙做对了,那么乙做错了,合乎题意;②乙的说法正确,则甲的说法错误,则甲做对了,丙的说法错误,则丙做对了,矛盾;③丙的说法正确,则丙做错了,甲的说法错误,则甲做对了,乙的说法错误,则甲做错了,自相矛盾.故选:B.【题目点拨】本题考查简单的合情推理,解题时可以采用分类讨论法进行假设,考查推理能力,属于中等题.8、A【解题分析】

利用正态分布曲线关于对称进行求解.【题目详解】,正态分布曲线关于对称,,,.【题目点拨】本题考查正态分布,考查对立事件及概率的基本运算,属于基础题.9、B【解题分析】

判断几何体的形状几何体是正方体与一个四棱柱的组合体,利用三视图的数据求解几何体的表面积即可.【题目详解】由题意可知几何体是正方体与一个四棱柱的组合体,如图:几何体的表面积为:.故选B.【题目点拨】本题考查三视图求解几何体的表面积,判断几何体的形状是解题的关键,属于中档题.10、B【解题分析】如图:所以把67化为二进制数为1000011(2).故选B.考点:二进制法.11、B【解题分析】试题分析:先排除了舞蹈节目以外的5个节目,共种,把2个舞蹈节目插在6个空位中,有种,所以共有种.考点:排列组合.12、C【解题分析】

分别代入,两式作差可得左边应添加项。【题目详解】由n=k时,左边为,当n=k+1时,左边为所以增加项为两式作差得:,选C.【题目点拨】运用数学归纳法证明命题要分两步,第一步是归纳奠基(或递推基础)证明当n取第一个值n0(n0∈N*)时命题成立,第二步是归纳递推(或归纳假设)假设n=k(k≥n0,k∈N*)时命题成立,证明当n=k+1时命题也成立,只要完成这两步,就可以断定命题对从n0开始的所有的正整数都成立,两步缺一不可.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

由题意得到关于a,b的方程组,求解方程组即可确定椭圆的短轴长度.【题目详解】不妨设椭圆方程为:,由题意可得,解得,则椭圆的短轴长度为:.故答案为:.【题目点拨】本题主要考查椭圆的几何性质,方程的数学思想,椭圆短轴的定义与计算等知识,意在考查学生的转化能力和计算求解能力.14、2.【解题分析】分析:因为函数是偶函数,先根据得出第二段函数表达式,然后再计算即可.详解:由题可得:当时,-x>0,故所以=0+2=2,故答案为2.点睛:考查偶函数的基本性质,根据偶函数定义求出第二段表达式是解题关键,属于中档题.15、①③【解题分析】分析:由题意知射击一次击中目标的概率是0.9,得到第3次击中目标的概率是0.9,连续射击4次,且他各次射击是否击中目标相互之间没有影响,得到是一个独立重复试验,根据独立重复试验的公式即可得到结果.详解:射击一次击中目标的概率是0.9,第3次击中目标的概率是0.9,①正确;连续射击4次,且各次射击是否击中目标相互之间没有影响,本题是一个独立重复试验,根据独立重复试验的公式得到恰好击中目标3次的概率是,②不正确;至少击中目标1次的概率是1-0.14③正确;恰好有连续2次击中目标的概率为,④不正确.故答案为:①③.点睛:本题主要考查了独立重复试验,以及n次独立重复试验中恰好发生k次的概率.16、1【解题分析】

通过三角形的面积公式可知当点P到直线AB的距离最小时面积最小,求出与直线2x﹣y﹣2=0平行且为抛物线的切线的直线方程,进而利用两直线间的距离公式及面积公式计算即得结论.【题目详解】依题意,A(﹣2,0),B(0,﹣2),设与直线x+y+2=0平行且与抛物线相切的直线l方程为:x+y+t=0,联立直线l与抛物线方程,消去y得:y2+4y+4t=0,则△=16﹣16t=0,即t=1,∵直线x+y+2=0与直线l之间的距离d,∴Smin|AB|d1.故答案为1.【题目点拨】本题考查直线与圆锥曲线的关系,考查运算求解能力,数形结合是解决本题的关键,属于中档题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),的最大值为0.(2)【解题分析】

(1)利用导数计算出,得出的值,然后利用导数求出函数在上的最大值作为函数的最大值;(2)将所求不等式转化为对任意的恒成立,转化为,对的取值范围进行分类讨论,考查函数的单调性,结合求出实数的取值范围.【题目详解】(1),由题意得,,则,经检验满足.因为是偶函数,故只考虑部分的最大值,当时,,又,此时在上单调递减,则,所以的最大值为0.(2)设,只要证,对恒成立,且注意到.,设,,,因为,则,从而对恒成立,则在上单调递增,则,即,①当,即时,,故在上单调递增,于是恒成立;②当,即时,存在,使得时,,即在上递减,从而,不能使恒成立.综上所述:,所以的最大值为.【题目点拨】本题考查导数的计算、利用导数求函数的最值以及利用导数研究函数不等式恒成立问题,对于函数不等式恒成立问题,通常是转化为函数的最值来求解,并通过利用导数分析函数的单调性来得到函数的最值,考查化归与转化思想,属于难题.18、(1)8;(2);(3)分布列见解析,2.【解题分析】

(1)利用平均数的公式求解即可;(2)所求概率为评分恰好是10分的概率与评分大于等于8分的概率的比,即可求解;(3)由题知服从,进而去利用公式求解分布列及期望即可.【题目详解】(1)设观众评分的平均数为,则(2)设A表示事件“1位观众评分不小于8分”,B表示事件“1位观众评分是10分”(3)由题知服从,(,1,2,3,4)则的分布列为:01234P【题目点拨】本题考查平均数,考查二项分布的分布列与期望,考查数据处理能力.19、(1)2;(2)2.【解题分析】分析:(1)求出函数的导数,求出a的值,根据函数的单调性求出函数的最小值即可;(2)问题转化为,令,,根据函数的单调性求出k的范围即可.详解:(1),由是的极值点,得,.易知在上单调递减,在上单调递增,所有当时,在上取得最小值2.(2)由(1)知,此时,,令,,,令,,在单调递增,且,,在时,,,由,,又,且,所以的最大值为2.点睛:本题考查了函数的单调性、最值问题,考查了导数的应用以及函数恒成立问题,是一道综合题.20、(1)曲线的轨迹是以为圆心,3为半径的圆.(2)【解题分析】

(1)由曲线的参数方程,消去参数,即可得到曲线的普通方程,得出结论;(2)把直线的极坐标方程化为直角坐标方程,再由点到直线的距离公式,列出方程,即可求解。【题目详解】(1)由(为参数),消去参数得,故曲线的普通方程为.曲线的轨迹是以为圆心,3为半径的圆.(2)由,展开得,的直角坐标方程为.则圆心到直线的距离为,则,解得.【题目点拨】本题主要考查了参数方程与普通方程,极坐标方程与直角坐标方程的互化及应用,重点考查了转化与化归能力.通常遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论