天水市重点中学2024届数学高二第二学期期末调研模拟试题含解析_第1页
天水市重点中学2024届数学高二第二学期期末调研模拟试题含解析_第2页
天水市重点中学2024届数学高二第二学期期末调研模拟试题含解析_第3页
天水市重点中学2024届数学高二第二学期期末调研模拟试题含解析_第4页
天水市重点中学2024届数学高二第二学期期末调研模拟试题含解析_第5页
已阅读5页,还剩11页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

天水市重点中学2024届数学高二第二学期期末调研模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知是两条不同直线,是三个不同平面,下列命题中正确的是()A.若,则 B.若,则C.若,则 D.若,则2.如表提供了某厂节能降耗技术改造后在生产产品过程中的记录的产量与相应的生产能耗的几组对应数据如图:根据下表数据可得回归方程,那么表中的值为()A. B. C. D.3.若函数有个零点,则的取值范围是()A. B.C. D.4.若,则()A. B.1 C.0 D.5.函数的部分图象大致是()A. B.C. D.6.设是定义域为的偶函数,且在单调递减,则()A.B.C.D.7.命题,,则为()A., B.,C., D.,8.已知函数在上恒不大于0,则的最大值为()A. B. C.0 D.19.在“一带一路”的知识测试后甲、乙、丙三人对成绩进行预测.甲:我的成绩最高.乙:我的成绩比丙的成绩高丙:我的成绩不会最差成绩公布后,三人的成绩互不相同且只有一个人预测正确,那么三人按成绩由高到低的次序可能为()A.甲、丙、乙 B.乙、丙、甲C.甲、乙、丙 D.丙、甲、乙10.已知复数,则的虚部是()A. B. C. D.11.有下列数据:下列四个函数中,模拟效果最好的为()A. B. C. D.12.平面向量,,(),且与的夹角等于与的夹角,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.行列式的第2行第3列元素的代数余子式的值为________.14.已知函数对任意的满足(其中是函数的导函数),则下列不等式成立的是__________.①②③④15.在正项等比数列中,,则公比__________.16.已知两点,,则以线段为直径的圆的方程为_____________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,是偶函数.(1)求的值;(2)解不等式.18.(12分)如图,矩形和等边三角形中,,平面平面.(1)在上找一点,使,并说明理由;(2)在(1)的条件下,求平面与平面所成锐二面角余弦值.19.(12分)已知函数的导函数为,的图象在点处的切线方程为,且.(1)求函数的解析式;(2)若对任意的:,存在零点,求的取值范围.20.(12分)如图,在多面体中,平面,四边形为正方形,四边形为梯形,且,,,.(1)求直线与平面所成角的正弦值;(2)线段上是否存在点,使得直线平面?若存在,求的值:若不存在,请说明理由.21.(12分)已知知x为正实数,n为正偶数,在的展开式中,(1)若前3项的系数依次成等差数列,求n的值及展开式中的有理项;(2)求奇数项的二项式系数的和与偶数项的二项式系数的和,并比较它们的大小.22.(10分)已知函数.(1)当时,解不等式;(2)若存在实数解,求实数a取值范围.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】不正确,因为垂直于同一条直线的两个平面平行;不正确,垂直于同一个平面的两个平面平行或相交;平行于同一条直线的两个平面平行或相交;正确.2、D【解题分析】

计算出、,将点的坐标代入回归直线方程可求出的值.【题目详解】由题意得,,由于回归直线过样本的中心点,所以,,解得,故选:D.【题目点拨】本题考查回归直线方程的应用,解题时要熟悉回归直线过样本中心点这一结论的应用,考查计算能力,属于基础题.3、D【解题分析】分析:首先研究函数的性质,然后结合函数图象考查临界情况即可求得最终结果.详解:令,,原问题等价于与有两个不同的交点,当时,,,则函数在区间上单调递增,当时,,,则函数在区间上单调递增,在区间上单调递减,绘制函数图象如图所示,函数表示过坐标原点的直线,考查临界情况,即函数与函数相切的情况,当时,,当时,,数形结合可知:的取值范围是.本题选择D选项.点睛:本题主要考查导数研究函数的单调性,导数研究函数的切线方程,数形结合的数学思想等知识,意在考查学生的转化能力和计算求解能力.4、D【解题分析】分析:根据题意求各项系数和,直接赋值法令x=-1代入即可得到.详解:已知,根据二项式展开式的通项得到第r+1项是,故当r为奇数时,该项系数为负,故原式令x=-1代入即可得到.故答案为D.点睛:这个题目考查了二项式中系数和的问题,二项式主要考查两种题型,一是考查系数和问题;二是考查特定项系数问题;在做二项式的问题时,看清楚题目是求二项式系数还是系数,还要注意在求系数和时,是不是缺少首项;解决这类问题常用的方法有赋值法,求导后赋值,积分后赋值等.5、B【解题分析】

先判断函数奇偶性,再根据对应区间函数值的正负确定选项.【题目详解】为偶函数,舍去A;当时,舍去C;当时,舍去D;故选:B【题目点拨】本题考查函数奇偶性以及识别函数图象,考查基本分析求解判断能力,属基础题.6、C【解题分析】

由已知函数为偶函数,把,转化为同一个单调区间上,再比较大小.【题目详解】是R的偶函数,.,又在(0,+∞)单调递减,∴,,故选C.【题目点拨】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.7、C【解题分析】

含有一个量词命题的否定方法:改变量词,否定结论.【题目详解】量词改为:,结论改为:,则,.故选:C.【题目点拨】本题考查含一个量词命题的否定,难度较易.含一个量词命题的否定方法:改量词,否结论.8、A【解题分析】

先求得函数导数,当时,利用特殊值判断不符合题意.当时,根据的导函数求得的最大值,令这个最大值恒不大于零,化简后通过构造函数法,利用导数研究所构造函数的单调性和零点,并由此求得的取值范围,进而求得的最大值.【题目详解】,当时,,则在上单调递增,,所以不满足恒成立;当时,在上单调递增,在上单调递减,所以,又恒成立,即.设,则.因为在上单调递增,且,,所以存在唯一的实数,使得,当时,;当时,,所以,解得,又,所以,故整数的最大值为.故选A.【题目点拨】本小题主要考查利用导数研究函数的单调性和最值,考查构造函数法,考查零点存在性定理,考查化归与转化的数学思想方法,属于中档题.9、D【解题分析】

假设一个人预测正确,然后去推导其他两个人的真假,看是否符合题意.【题目详解】若甲正确,则乙丙错,乙比丙成绩低,丙成绩最差,矛盾;若乙正确,则甲丙错,乙比丙高,甲不是最高,丙最差,则成绩由高到低可为乙、甲、丙;若丙正确,则甲乙错,甲不是最高,乙比丙低,丙不是最差,排序可为丙、甲、乙.A、B、C、D中只有D可能.故选D.【题目点拨】本题考查合情推理,抓住只有一个人预测正确是解题的关键,属于基础题.10、B【解题分析】

将利用复数代数形式的乘除运算化简即可得到答案.【题目详解】由题意,,所以的虚部是.故选:B【题目点拨】本题主要考查复数的基本概念和复数代数形式的乘除运算,属于基础题.11、A【解题分析】分析:将,,代入四个选项,可得结论.详解:将,,代入四个选项,可得A模拟效果最好.故选:A.点睛:本题考查选择合适的模拟来拟合一组数据,考查四种函数的性质,本题是一个比较简单的综合题目.12、D【解题分析】

,,,与的夹角等于与的夹角,,,解得,故选D.【考点定位】向量的夹角及向量的坐标运算.二、填空题:本题共4小题,每小题5分,共20分。13、-11【解题分析】

根据代数余子式列式,再求行列式得结果【题目详解】故答案为:-11【题目点拨】本题考查代数余子式,考查基本分析求解能力,属基础题.14、①【解题分析】构造函数,则,即函数是单调递增函数。因,故,即,所以命题①正确;因,故,即,则命题②不正确;又因为,则,即,则命题③不正确;又因为,则,即,则命题④不正确。应填答案①。点睛:解答本题的关键和难点是构造函数,这是解答本题的突破口和瓶颈。只要能构造出函数的解析式为,然后运用导数知识对函数进行求导,借助导数与函数单调性之间的关系就分别验证四个答案即可巧妙获解。15、【解题分析】分析:利用等比数列的通项公式把等式改写成含有和的式子,联立方程组求解即可.详解:由题意得:,两式相除消去并求解得:,,.故答案为:.点睛:等比数列基本量的运算是等比数列中的一类基本问题,数列中有五个量a1,n,q,an,Sn,一般可以“知三求二”,通过列方程(组)可迎刃而解.16、【解题分析】

根据中点坐标公式求圆心为(1,1),求两点间距离公式求AB的长并得出半径为,写出圆的标准方程即可。【题目详解】直径的两端点分别为(0,1),(1,0),∴圆心为(1,1),半径为,故圆的方程为(x﹣1)1+(y﹣1)1=1.故答案为:(x﹣1)1+(y﹣1)1=1.【题目点拨】在确定圆的方程时,选择标准方程还是一般方程需要灵活选择,一般情况下易于确定圆或半径时选择标准方程,给出条件是几个点的坐标时,两种形式都可以。此题选择标准形式较简单。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)由函数是偶函数,可知,根据对数的运算,即可求解;(2)由题,根据对数的运算性质,得,令,转化为,利用一元二次不等式的解法和指数与对数的运算,即可求解.【题目详解】(1)由函数是偶函数,可知,所以恒成立,化简得,即,解得.(2)由题,即,整理得,令得,解得或者,从而或,解得或,原不等式解集为.【题目点拨】本题主要考查了函数的奇偶性的应用,指数函数、对数函数的运算性质,以及一元二次不等式的解法的应用,着重考查了推理与运算能力,属于基础题.18、(1)证明过程见解析;(2)平面与平面所成锐二面角的余弦值为.【解题分析】试题分析:(1)分别取的中点,利用三角形的中位线的性质,即可证明面,进而得到;(2)建立空间直角坐标系,利用平面与平面法向量成的角去求解.试题解析:(1)为线段的中点,理由如下:分别取的中点,连接,在等边三角形中,,又为矩形的中位线,,而,所以面,所以;(2)由(1)知两两互相垂直,建立空间直角坐标系如图所示,,三角形为等边三角形,.于是,设面的法向量,所以,得,则面的一个法向量,又是线段的中点,则的坐标为,于是,且,又设面的法向量,由,得,取,则,平面的一个法向量,所以,平面与平面所成锐二面角的余弦值为.19、(1)(2)【解题分析】

(1)根据切线、函数值、导数值计算解析式;(2)计算出在时的值域,再根据求解出的范围.【题目详解】解:(1)∵,∴,,∵,∴,①∵的图象在点处的切线方程为,∴当时,,且切线斜率,则,②.,③,联立解得,,,即;(2)当时,当时,当时,又,,,.所以因为对任意的,存在零点,所以,即,所以【题目点拨】对于形如的函数零点问题,可将其转化为的方程根的问题,或者也可以利用与的函数图象交点来解决问题.20、(1);(2).【解题分析】

建立适当的空间直角坐标系.(1)求出平面的法向量,利用空间向量夹角公式可以求出直线与平面所成角的正弦值;(2)求出平面的法向量,结合线面平行的性质,空间向量共线的性质,如果求出的值,也就证明出存在线段上是否存在点,使得直线平面,反之就不存在.【题目详解】以为空间直角坐标系的原点,向量所在的直线为轴.如下所示:.(1)平面的法向量为,..直线与平面所成角为,所以有;(2)假设线段上是存在点,使得直线平面.设,因此,所以的坐标为:..设平面的法向量为,,,因为直线平面,所以有,即.【题目点拨】本题考查了线面角的求法以及线面平行的性质,考查了数学运算能力.21、(1),有理项有三项,分别为:;(2)128,128,相等【解题分析】

(1)首先找出展开式的前3项,然后利用等差数列的性质即可列出等式,求出n,于是求出通项,再得到有理项;(2)分别计算偶数项和奇数项的二项式系数和,比较大小即可.【题目详解】(1)二项展开式的前三项的系数分别为:,而前三项构成等差数列,故,解得或(舍去);所以,当时,为有理项,又且,所以符合要求;故有理项有三项,分别为:;(2)奇数项的二项式系数和为:,偶数项的二项式系数和为:,故奇数项的二项式系数的和等于偶数项的二项式系数的和.【题目点拨】

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论