版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江苏省亭湖高级中学高二数学第二学期期末质量检测模拟试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.“所有的倍数都是的倍数,某奇数是的倍数,故该奇数是的倍数.”上述推理()A.大前提错误 B.小前提错误C.结论错误 D.正确2.已知函数,若在上有解,则实数的取值范围为()A. B. C. D.3.如图是“向量的线性运算”知识结构,如果要加入“三角形法则”和“平行四边形法则”,应该放在()A.“向量的加减法”中“运算法则”的下位B.“向量的加减法”中“运算律”的下位C.“向量的数乘”中“运算法则”的下位D.“向量的数乘”中“运算律”的下位4.把函数的图象上所有点向左平行移动个单位长度,再把所得图象上所有点的横坐标伸长到原来的2倍(纵坐标不变),得到的图象所表示的函数是().A. B.C. D.5.直线y=a分别与直线y=2x+2,曲线y=x+lnx交于点A、A.3 B.2 C.3246.将函数的图像向右平移个单位长度,再把图象上所有点的横坐标伸长到原来的倍(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数的最大值为 B.函数的最小正周期为C.函数的图象关于直线对称 D.函数在区间上单调递增7.设复数(为虚数单位),则的虚部为()A. B. C. D.8.在平行四边形ABCD中,,则cos∠ABD的范围是()A. B. C. D.9.已知函数的图象关于原点中心对称,则A.1 B. C. D.210.由0,1,2,3组成无重复数字的四位数,其中0与2不相邻的四位数有A.6个 B.8个 C.10个 D.12个11.在极坐标系中,圆的圆心的极坐标是()A. B. C. D.12.设随机变量,若,则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.命题“∈R,+2+2≤0”的否定是14.某校高二学生一次数学诊断考试成绩(单位:分)服从正态分布,从中抽取一个同学的数学成绩,记该同学的成绩为事件,记该同学的成绩为事件,则在事件发生的条件下事件发生的概率______.(结果用分数表示)附参考数据:;;.15.设,,,则的最小值为__________.16.若满足约束条件则的最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在处有极值,求的值及的单调区间.18.(12分)已知的展开式中,末三项的二项式系数的和等于121;(1)求n的值;(2)求展开式中系数最大的项;19.(12分)已知函数,.(Ⅰ)求函数的值域;(Ⅱ)若方程在上只有三个实数根,求实数的取值范围.20.(12分)骰子是一种质地均匀的正方体玩具,它的六个面上分别刻有1到6的点数.甲、乙两人玩一种“比手气”的游戏.游戏规则如下:在一局游戏中,两人都分别抛掷同一颗骰子两次,若某人两次骰子向上的点数之差的绝对值不大于2,就称他这局“好手气”.(1)求甲在一局游戏中获得“好手气”的概率;(2)若某人获得“好手气”的局数比对方多,称他“手气好”.现甲、乙两人共进行了3局“比手气”游戏,求甲“手气好”的概率.21.(12分)已知函数.(1)当时,解不等式;(2)若存在满足,求实数a的取值范围.22.(10分)已知,均为正实数,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论是否都正确,根据三个方面都正确,得到结论.详解:∵所有9的倍数都是3的倍数,某奇数是9的倍数,故某奇数是3的倍数,大前提:所有9的倍数都是3的倍数,小前提:某奇数是9的倍数,结论:故某奇数是3的倍数,∴这个推理是正确的,故选D.点睛:该题考查的是有关演绎推理的定义问题,在解决问题的过程中,需要先分清大前提、小前提和结论分别是什么,之后结合定义以及对应的结论的正确性得出结果.2、D【解题分析】
首先判断函数单调性为增.,将函数不等式关系转化为普通的不等式,再把不等式转换为两个函数的大小关系,利用图像得到答案.【题目详解】在定义域上单调递增,,则由,得,,则当时,存在的图象在的图象上方.,,则需满足.选D.【题目点拨】本题考查了函数的单调性,解不等式,将不等式关系转化为图像关系等知识,其中当函数单调递增时,是解题的关键.3、A【解题分析】
由“三角形法则”和“平行四边形法则”是向量的加减法的运算法则,由此易得出正确选项.【题目详解】因为“三角形法则”和“平行四边形法则”是向量的加减法的运算法则,故应该放在“向量的加减法”中“运算法则”的下位.故选A.【题目点拨】本题考查知识结构图,向量的加减法的运算法则,知识结构图比较直观地描述了知识之间的关联,解题的关键是理解知识结构图的作用及知识之间的上下位关系.4、A【解题分析】
先根据左加右减的性质进行平移,再根据横坐标伸长到原来的2倍时的值变为原来的倍,得到答案.【题目详解】解:向左平移个单位,即以代,得到函数,再把所得图象上所有点的横坐标伸长到原来的2倍,即以代,得到函数:.故选:A.【题目点拨】本题主要考查三角函数的变换,属于基础题.5、D【解题分析】试题分析:设A(x1,a),B(x2,a),则2(x1+1)=x2+lnx2考点:导数的应用.6、D【解题分析】
根据平移变换和伸缩变换的原则可求得的解析式,依次判断的最值、最小正周期、对称轴和单调性,可求得正确结果.【题目详解】函数向右平移个单位长度得:横坐标伸长到原来的倍得:最大值为,可知错误;最小正周期为,可知错误;时,,则不是的对称轴,可知错误;当时,,此时单调递增,可知正确.本题正确选项:【题目点拨】本题考查三角函数平移变换和伸缩变换、正弦型函数的单调性、对称性、值域和最小正周期的求解问题,关键是能够明确图象变换的基本原则,同时采用整体对应的方式来判断正弦型函数的性质.7、C【解题分析】分析:先化简复数z,再求z的虚部.详解:由题得=,故复数z的虚部为-1,故答案为C.点睛:(1)本题主要考查复数的运算,意在考查学生对该知识的掌握水平和运算能力.(2)复数的实部是a,虚部为b,不是bi.8、D【解题分析】
利用可得边之间的关系,结合余弦定理可得cos∠ABD的表达式,然后可得范围.【题目详解】因为,所以;不妨设,则,把两边同时平方可得,即;在中,,所以;;令,,则,易知,为增函数,所以.故选:D.【题目点拨】本题主要考查平面向量的运算及解三角形,构造目标表达式是求解的关键,涉及最值问题经常使用函数的单调性或基本不等式来求解.9、B【解题分析】
由函数的图象关于原点对称可得函数是奇函数,由恒成立可得,从而可得结果.【题目详解】函数图象关于原点对称,函数是奇函数,则得,即,即,得,故选B.【题目点拨】本题主要考查函数的奇偶性,属于中档题.已知函数的奇偶性求参数,主要方法有两个,一是利用:(1)奇函数由恒成立求解,(2)偶函数由恒成立求解;二是利用特殊值:奇函数一般由求解,偶函数一般由求解,用特殊法求解参数后,一定要注意验证奇偶性.10、B【解题分析】分析:首先求由0,1,2,3组成无重复数字的四位数:先排千位数,有种排法,再排另外3个数,有种排法,利用乘法原理能求出组成没有重复数字的四位数的个数;然后求数字0,2相邻的情况:,先把0,2捆绑成一个数字参与排列,再减去0在千位的情况,由此能求出其中数字0,2相邻的四位数的个数.最后,求得0与2不相邻的四位数详解:由数字0,1,2,3组成没有重复数字的四位数有:.
其中数字0,2相邻的四位数有:则0与2不相邻的四位数有。故选B点睛:本题考查排列数的求法,考查乘法原理、排列、捆绑法,间接法等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.11、B【解题分析】
先把圆的极坐标方程化为直角坐标方程,确定其圆心的直角坐标再化成极坐标即可.【题目详解】圆化为,,配方为,因此圆心直角坐标为,可得圆心的极坐标为故选B【题目点拨】本题考查极坐标方程与直角坐标方程的转化,点的直角坐标与极坐标的转化,比较基础.12、A【解题分析】
根据对立事件的概率公式,先求出,再依二项分布的期望公式求出结果【题目详解】,即,所以,,故选A.【题目点拨】本题主要考查二项分布的期望公式,记准公式是解题的关键.二、填空题:本题共4小题,每小题5分,共20分。13、",x2+2x+2>0;【解题分析】
解:因为命题“∈R,+2+2≤0”的否定是",x2+2x+2>014、【解题分析】
计算出和,然后利用条件概率公式可得出的值.【题目详解】由题意可知,,事件为,,,所以,,,由条件概率公式得,故答案为:.【题目点拨】本题考查条件概率的计算,同时也考查了正态分布原则计算概率,解题时要将相应的事件转化为正态分布事件,充分利用正态密度曲线的对称性计算,考查计算能力,属于中等题.15、.【解题分析】
把分子展开化为,再利用基本不等式求最值.【题目详解】由,得,得,等号当且仅当,即时成立.故所求的最小值为.【题目点拨】使用基本不等式求最值时一定要验证等号是否能够成立.16、6【解题分析】分析:首先绘制出可行域,然后结合目标函数的几何意义整理计算即可求得最终结果.详解:绘制不等式组表示的平面区域如图所示,结合目标函数的几何意义可知目标函数在点A处取得最大值,联立直线方程:,可得点A坐标为:,据此可知目标函数的最大值为:.点睛:求线性目标函数z=ax+by(ab≠0)的最值,当b>0时,直线过可行域且在y轴上截距最大时,z值最大,在y轴截距最小时,z值最小;当b<0时,直线过可行域且在y轴上截距最大时,z值最小,在y轴上截距最小时,z值最大.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、见解析.【解题分析】试题分析:由极值定义得,解得,再根据导函数符号确定函数单调区间:当时,单调递增;当时,单调递减.试题解析:的定义域为,,由题意可得,解得:,从而,显然在上是减函数,且,所以当时,单调递增;当时,单调递减.故的单调增区间是,的单调减区间是18、(1);(2)或【解题分析】
(1)由末三项二项式系数和构造方程,解方程求得结果;(2)列出展开式通项,设第项为系数最大的项,得到不等式组,从而求得的取值,代入得到结果.【题目详解】(1)展开式末三项的二项式系数分别为:,,则:,即:,解得:(舍)或(2)由(1)知:展开式通项为:设第项即为系数最大的项,解得:系数最大的项为:或【题目点拨】本题考查二项式定理的综合应用,涉及到二项式系数的问题、求解二项展开式中系数最大的项的问题,属于常规题型.19、(Ⅰ);(Ⅱ).【解题分析】分析:(1)由二倍角公式对函数化一,得到值域;(2),则,根据三角函数的图像得到或,解出即可.详解:(Ⅰ)解法1:=,函数的值域为.解法2:=,函数的值域为.(Ⅱ),则,或,即:或.由小到大的四个正解依次为:,,,.方程在上只有三个实数根.,解得:.点睛:函数的零点或方程的根的问题,一般以含参数的三次式、分式、以e为底的指数式或对数式及三角函数式结构的函数零点或方程根的形式出现,一般有下列两种考查形式:(1)确定函数零点、图象交点及方程根的个数问题;(2)应用函数零点、图象交点及方程解的存在情况,求参数的值或取值范围问题.研究方程根的情况,可以通过导数研究函数的单调性、最值、函数的变化趋势等,根据题目要求,通过数形结合的思想去分析问题,可以使得问题的求解有一个清晰、直观的整体展现。同时在解题过程中要注意转化与化归、函数与方程、分类讨论思想的应用.20、(1);(2).【解题分析】
(1)根据题意,分别求出先后抛掷同一颗骰子两次,以及获得“好手气”所包含的基本事件个数,基本事件个数比即为所求概率;(2)根据题意,得到甲、乙两人共进行了3局“比手气”游戏,则甲“手气好”共包含三种情况:甲获得3次“好手气”,乙少于3次;甲获得2次“好手气”,乙少于2次;甲获得1次“好手气”,乙获得0次;再由题中数据,即可求出结果.【题目详解】(1)由题意,甲先后抛掷同一颗骰子两次,共有种情况;获得“好手气”包含:,共种情况,因此甲在一局游戏中获得“好手气”的概率为;(2)由(1)可得,甲乙在一局游戏中获得“好手气”的概率均为;现甲、乙两人共进行了3局“比手气”游戏,则甲“手气好”共包含三种情况:甲获得3次“好手气”,乙少于3次;甲获得2次“好手气”,乙少于2次;甲获得1次“好手气”,乙获得0次;所以甲“手气好”的概率为:.【题目点拨】本题主要考查独立重复试验的概率,以及古典概型的概率计算,属于常考题型.21、(1)或;(2)【解题分析】
(1)以为分界点分段讨论解不等式。(2)原不等式可化为,由绝对值不等式求得的最小值小于3,解得参数.【题目详解】当时,,当时,不等式等价于,解得,即;当时,不等式等价于
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 广东外语外贸大学《营养生理学》2023-2024学年第一学期期末试卷
- 广东司法警官职业学院《别墅建筑设计》2023-2024学年第一学期期末试卷
- 广东生态工程职业学院《西方经济学(下)》2023-2024学年第一学期期末试卷
- 七年级上册《6.2.1直线、射线、线段》课件与作业
- 广东南华工商职业学院《色彩静物及人物头像》2023-2024学年第一学期期末试卷
- 广东梅州职业技术学院《计算机创客训练》2023-2024学年第一学期期末试卷
- 广东茂名健康职业学院《半导体器件原理》2023-2024学年第一学期期末试卷
- 一年级数学计算题专项练习1000题汇编
- 2024八年级地理上册第三章自然资源-我们生存和发展的物质基础学情评估晋教版
- 【2021届备考】2020全国名校物理试题分类解析汇编(11月第二期)A4-竖直上抛运动
- 2025年国务院发展研究中心信息中心招聘应届毕业生1人高频重点提升(共500题)附带答案详解
- 2024年公安机关理论考试题库500道及参考答案
- 2024年全国《国防和兵役》理论知识竞赛试题库与答案
- 特殊情况施工的技术措施
- 企业知识产权保护策略及实施方法研究报告
- 2024年07月11026经济学(本)期末试题答案
- 2024年中小企业股权融资合同3篇
- 2024年01月11289中国当代文学专题期末试题答案
- 2024年秋季生物教研组工作计划
- 2024年云南高中学业水平合格考历史试卷真题(含答案详解)
- 大学物理(二)知到智慧树章节测试课后答案2024年秋湖南大学
评论
0/150
提交评论