




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江省诸暨市暨阳初中2024届高二数学第二学期期末综合测试试题考生须知:1.全卷分选择题和非选择题两部分,全部在答题纸上作答。选择题必须用2B铅笔填涂;非选择题的答案必须用黑色字迹的钢笔或答字笔写在“答题纸”相应位置上。2.请用黑色字迹的钢笔或答字笔在“答题纸”上先填写姓名和准考证号。3.保持卡面清洁,不要折叠,不要弄破、弄皱,在草稿纸、试题卷上答题无效。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数的定义域为,且满足(是的导函数),则不等式的解集为()A. B. C. D.2.设P,Q分别是圆和椭圆上的点,则P,Q两点间的最大距离是()A. B.C. D.3.已知函数,则的值是()A. B. C. D.4.是第四象限角,,则等于()A. B.C. D.5.在的展开式中,项的系数为()A. B.40 C. D.806.已知矩形ABCD中,AB=2,BC=1,F为线段CD上一动点(不含端点),现将△ADF沿直线AF进行翻折,在翻折过程中不可能成立的是()A.存在某个位置,使直线AF与BD垂直 B.存在某个位置,使直线AD与BF垂直C.存在某个位置,使直线CF与DA垂直 D.存在某个位置,使直线AB与DF垂直7.定积分121xdxA.-34 B.3 C.ln8.已知椭圆方程为x24+y225=1,将此椭圆绕y轴旋转一周所得的旋转体的体积为V1,满足y≥-5A.V2=C.V2=54V9.某程序框图如图所示,则该程序运行后输出的值是()A.0 B.-1 C.-2 D.-810.两个半径都是的球和球相切,且均与直二面角的两个半平面都相切,另有一个半径为的小球与这二面角的两个半平面也都相切,同时与球和球都外切,则的值为()A. B. C. D.11.对任意复数,为虚数单位,则下列结论中正确的是()A. B. C. D.12.设为两条不同的直线,为两个不同的平面,则下列结论正确的是()A.,则B.,则C.,则D.,则二、填空题:本题共4小题,每小题5分,共20分。13.平面上画条直线,且满足任何条直线都相交,任何条直线不共点,则这条直线将平面分成__________个部分.14.长方体内接于球O,且,,则A、B两点之间的球面距离为______.15.双曲线的虚轴长为,其渐近线夹角为__________.16.已知,,则向量,的夹角为________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在中,角,,所对的边分别是,,,已知.(1)求的值;(2)若,,,为垂足,求的长.18.(12分)如图,在长方体中,、分别是棱,上的点,,(1)求异面直线与所成角的余弦值;(2)证明平面(3)求二面角的正弦值.19.(12分)在直角坐标系中,曲线:(为参数),直线:(为参数).(1)判断直线与曲线的位置关系;(2)点是曲线上的一个动点,求到直线的距离的最大值.20.(12分)已知,使不等式成立.(1)求满足条件的实数t的集合T;(2),使不等式成立,求的最大值.21.(12分)已知函数在与时都取得极值.(1)求的值与函数的单调区间;(2)若对,不等式恒成立,求的取值范围.22.(10分)设,函数.(1)若,极大值;(2)若无零点,求实数的取值范围;(3)若有两个相异零点,,求证:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
构造函数,利用导数分析函数在上的单调性,在不等式两边同时乘以化为,即,然后利用函数在上的单调性进行求解即可.【题目详解】构造函数,其中,则,所以,函数在定义域上为增函数,在不等式两边同时乘以得,即,所以,解得,因此,不等式的解集为,故选:D.【题目点拨】本题考查利用构造新函数求解函数不等式问题,其解法步骤如下:(1)根据导数不等式的结构构造新函数;(2)利用导数分析函数的单调性,必要时分析该函数的奇偶性;(3)将不等式变形为,利用函数的单调性与奇偶性求解.2、C【解题分析】
求出椭圆上的点与圆心的最大距离,加上半径,即可得出P,Q两点间的最大距离.【题目详解】圆的圆心为M(0,6),半径为,设,则,即,∴当时,,故的最大值为.故选C.【题目点拨】本题考查了椭圆与圆的综合,圆外任意一点到圆的最大距离是这个点到圆心的距离与圆的半径之和,根据圆外点在椭圆上,即可列出椭圆上一点到圆心的距离的解析式,结合函数最值,即可求得椭圆上一点到圆上一点的最大值.3、C【解题分析】
首先计算出,再把的值带入计算即可.【题目详解】根据题意得,所以,所以选择C【题目点拨】本题主要考查了分段函数求值的问题,属于基础题.4、B【解题分析】
∵α是第四象限角,∴sinα<0.∵,∴sinα=,故选B.5、D【解题分析】
通过展开二项式即得答案.【题目详解】在的展开式中,的系数为,故答案为D.【题目点拨】本题主要考查二项式定理,难度很小.6、C【解题分析】
连结BD,在中,可以作于O,并延长交CD于F,得到成立,得到A正确;由翻折中,保持不变,可得到B正确;根据翻折过程中,,可得到C错误;根据翻折过程中,保持不变,假设成立,得到平面ABD,结合题中条件,进而可得出结果.【题目详解】对于A,连结BD,在中,可以作于O,并延长交CD于F,则成立,翻折过程中,这个垂直关系保持不变,故A正确;对于B,在翻折过程中,保持不变,当时,有平面,从而,此时,AD=1,AB=2,BD=,故B正确;对于C,在翻折过程中,保持不变,若成立,则平面CDF,从而,AD=1,AC=,得CD=2,在翻折过程中,,即CD<2,所以,CD=2不成立,C不正确;对于D,在翻折过程中,保持不变,若成立,则平面ABD,从而,设此时,则BF=,BD=,只要,BD就存在,所以D正确选C.【题目点拨】本题主要考查空间中直线与直线的位置关系,熟记线面垂直的判定定理与性质定理即可,属于常考题型.7、C【解题分析】
直接利用微积分基本定理求解即可.【题目详解】由微积分基本定理可得,121x【题目点拨】本题主要考查微积分基本定理的应用,意在考查对基础知识的掌握情况,属于基础题.8、C【解题分析】
根据题意画出图形,分别求出椭圆绕y轴旋转一周所得的旋转体的体积为V1与满足y≥-50≤x≤2y≤52【题目详解】在同一平面直角坐标系中画出椭圆与旋转体如图,椭圆绕y轴旋转一周所得的旋转体为椭球,其体积为V1满足y≥-50≤x≤2y≤5其体积V2=π×2故选:C.【题目点拨】本题主要考查了旋转体的体积及学生的计算能力,属于中档题.9、B【解题分析】根据流程图可得:第1次循环:;第2次循环:;第3次循环:;第4次循环:;此时程序跳出循环,输出.本题选择B选项.10、D【解题分析】
取三个球心点所在的平面,过点、分别作、,垂足分别为点,过点分别作,,分别得出、以及,然后列出有关的方程,即可求出的值.【题目详解】因为三个球都与直二面角的两个半平面相切,所以与、、共面,如下图所示,过点、分别作、,垂足分别为点,过点分别作,,则,,,,,,所以,,等式两边平方得,化简得,由于,解得,故选D.【题目点拨】本题主要考查球体的性质,以及球与平面相切的性质、二面角的性质,考查了转化思想与空间想象能力,属于难题.转化是数学解题的灵魂,合理的转化不仅仅使问题得到了解决,还可以使解决问题的难度大大降低,本题将空间问题转化为平面问题是解题的关键.11、B【解题分析】分析:由题可知,然后根据复数的运算性质及基本概念逐一核对四个选项得到正确答案.详解:已知则选项A,,错误.选项B,,正确.选项C,,错误.选项D,,不恒成立,错误.故选B.点睛:本题考查了复数的运算法则、共轭复数的定义、复数模的计算.12、A【解题分析】
依据空间中点、线、面的位置逐个判断即可.【题目详解】直线所在的方向向量分别记为,则它们分别为的法向量,因,故,从而有,A正确.B、C中可能平行,故B、C错,D中平行、异面、相交都有可能,故D错.综上,选A.【题目点拨】本题考查空间中与点、线、面位置关系有关的命题的真假判断,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:根据几何图形,列出前面几项,根据归纳推理和数列中的累加法即可得到结果。详解:1条直线将平面分成2个部分,即2条直线将平面分成4个部分,即3条直线将平面分为7个部分,即4条直线将平面分为11个部分,即,所以….根据累加法得所以点睛:本题综合考查了数列的累加法、归纳推理的综合应用。在解题过程中,应用归纳推理是解决较难题目的一种思路和方法,通过分析具体项,找到一般规律,再分析解决问题,属于中档题。14、【解题分析】
利用长方体外接球直径为其体对角线长求得外接球半径,及所对球心角,利用弧长公式求出答案.【题目详解】由,,得,长方体外接球的半径为正三角形,,两点间的球面距离为,故答案为:.【题目点拨】本题考查了长方体外接球问题,以及求两点球面距离,属于简单题.15、60°.【解题分析】
计算出的值,得出渐近线的斜率,得出两渐近线的倾斜角,从而可得出两渐近线的夹角.【题目详解】由题意知,双曲线的虚轴长为,得,所以,双曲线的渐近线方程为,两条渐近线的倾斜角分别为、,因此,两渐近线的夹角为,故答案为.【题目点拨】本题考查双曲线渐近线的夹角,解题的关键就是求出渐近线方程,根据渐近线的倾斜角来求解,考查运算求解能力,属于基础题.16、【解题分析】
根据条件即可求出,利用,根据向量的夹角范围即可得出夹角.【题目详解】,.,故答案为:.【题目点拨】本题考查向量的数量积公式,向量数量积的坐标表示,属于基础题,难度容易.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】
(1)根据正弦定理化边为角,再根据两角和正弦公式化简得结果,(2)先根据余弦定理求,再利用三角形面积公式求AD.【题目详解】(1)因为,所以因为,所以,即.因为,所以,所以.则.(2)因为,所以,.在中,由余弦定理可得,即.由,得.所以.【题目点拨】本题考查正弦定理、余弦定理以及三角形面积公式,考查基本分析求解能力,属中档题.18、(1),(2)见解析(3)【解题分析】方法一:如图所示,建立空间直角坐标系,点A为坐标原点,设,依题意得,,,(1)解:易得,于是所以异面直线与所成角的余弦值为(2)证明:已知,,于是·=0,·=0.因此,,,又所以平面(3)解:设平面的法向量,则,即不妨令X=1,可得.由(2)可知,为平面的一个法向量.于是,从而所以二面角的正弦值为方法二:(1)解:设AB=1,可得AD=2,AA1=4,CF=1.CE=链接B1C,BC1,设B1C与BC1交于点M,易知A1D∥B1C,由,可知EF∥BC1.故是异面直线EF与A1D所成的角,易知BM=CM=,所以,所以异面直线FE与A1D所成角的余弦值为(2)证明:连接AC,设AC与DE交点N因为,所以,从而,又由于,所以,故AC⊥DE,又因为CC1⊥DE且,所以DE⊥平面ACF,从而AF⊥DE.连接BF,同理可证B1C⊥平面ABF,从而AF⊥B1C,所以AF⊥A1D因为,所以AF⊥平面A1ED(3)解:连接A1N.FN,由(2)可知DE⊥平面ACF,又NF平面ACF,A1N平面ACF,所以DE⊥NF,DE⊥A1N,故为二面角A1-ED-F的平面角易知,所以,又所以,在连接A1C1,A1F在.所以所以二面角A1-DE-F正弦值为19、(1)直线与曲线相离(2)【解题分析】
(1)先分别求出曲线C和直线l的普通方程,再联立求,判断位置关系;(2)由点到直线的距离公式可得点P到直线l的距离最大值。【题目详解】解:(1)曲线的普通方程为,直线的普通方程为.由,得,因为,所以直线与曲线相离.(2)设点,则到直线:的距离(其中),所以到直线的距离的最大值为.【题目点拨】本题考查参数化为普通方程,以及用点到直线的距离公式求曲线上动点到直线的最大值。20、(1);(2).【解题分析】
(1)利用三角不等式求出的最小值,从而得到的范围;(2)由于,使不等式成立,则的最小值小于等于的最大值,利用基本不等式求出的最小值,从而求得的最大值。【题目详解】(1)由题意知,﹐当且仅当时等号成立,所以,故集合.(2)由基本不等式可得:,当且仅当时等号成立.又因为,使不等式成立,则,即,故的最大值为.【题目点拨】本题主要考查绝对值三角不等式以及基本不等式求最值的问题,属于中档题。21、解:(1),递增区间是(﹣∞,)和(1,+∞),递减区间是(,1).(1)【解题分析】
(1)求出f(x),由题意得f()=0且f(1)=0联立解得与b的值,然后把、b的值代入求得f(x)及f(x),讨论导函数的正负得到函数的增减区间;(1)根据(1)函数的单调性,由于x∈[﹣1,1]恒成立求出函数的最大值为f(1),代入求出最大值,然后令f(1)<c1列出不等式,求出c的范围即可.【题目详解】(1),f(x)=3x1+1ax+b由解得,f(x)=3x1﹣x﹣1=(3x+1)(x﹣1),函数f(x)的单调区间如下表:x(﹣∞,)(,1)1(1,+∞)f(x
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论