




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届上海市部分重点中学数学高二第二学期期末质量检测试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.从不同品牌的4台“快译通”和不同品牌的5台录音机中任意抽取3台,其中至少有“快译通”和录音机各1台,则不同的取法共有()A.140种 B.84种 C.70种 D.35种2.正方体中,直线与平面所成角正弦值为()A. B. C. D.3.已知函数的图象关于点对称,则在上的值域为()A. B. C. D.4.我国高铁发展迅速,技术先进.经统计,在经停某站的高铁列车中,每天的正点率服从正态分布,且,则()A.0.96 B.0.97 C.0.98 D.0.995.已知某几何体的三视图如图所示,其中正视图和侧视图都由半圆及矩形组成,俯视图由正方形及其内切圆组成,则该几何体的表面积等于()A. B. C. D.6.命题“”的否定是()A. B.C. D.7.2019年5月31日晚,大连市某重点高中举行一年一度的毕业季灯光表演.学生会共安排6名高一学生到学校会议室遮挡4个窗户,要求两端两个窗户各安排1名学生,中间两个窗户各安排两名学生,不同的安排方案共有()A.720 B.360 C.270 D.1808.外接圆的半径等于1,其圆心O满足,则向量在方向上的投影等于()A. B. C. D.39.正项等比数列中,存在两项使得,且,则的最小值是()A. B.2 C. D.10.在三棱柱面,,,,则三棱柱的外接球的表面积为()A. B. C. D.11.定义在上的函数的导函数在的图象如图所示,则函数在的极大值点个数为()A.1 B.2 C.3 D.412.用,,,,这个数字组成没有重复数字的三位数,其中偶数共有()A.个 B.个 C.个 D.个二、填空题:本题共4小题,每小题5分,共20分。13.已知(为常数),对任意,均有恒成立,下列说法:①的周期为6;②若(为常数)的图像关于直线对称,则;③若,且,则必有;④已知定义在上的函数对任意均有成立,且当时,;又函数(为常数),若存在使得成立,则实数的取值范围是,其中说法正确的是_______(填写所有正确结论的编号)14.设函数的定义域为,满足,且当时,.若对任意的,都有,则的取值范围是________.15.在棱长为的正方体中,是棱的中点,则到平面的距离等于_____.16.除以9的余数为_______;三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设命题:方程表示双曲线;命题:“方程表示焦点在轴上的椭圆”.(1)若和均为真命题,求的取值范围;(2)若为真命题,为假命题,求实数的取值范围.18.(12分)已知椭圆的离心率为,,分别是其左,右焦点,为椭圆上任意一点,且.(1)求椭圆的标准方程;(2)过作直线与椭圆交于两点,点在轴上,连结分别与直线交于点,若,求的值.19.(12分)已知,.(Ⅰ)求函数f(x)的极值;(Ⅱ)对一切的时,恒成立,求实数a的取值范围.20.(12分)面对某种流感病毒,各国医疗科研机构都在研究疫苗,现有A、B、C三个独立的研究机构在一定的时期研制出疫苗的概率分别为SKIPIF1<0.求:(1)他们能研制出疫苗的概率;(2)至多有一个机构研制出疫苗的概率.21.(12分)已知函数f(x)=ax2+bx+c(a>0,b∈R,c∈R).(1)若函数f(x)的最小值是f(-1)=0,且c=1,F(x)=求F(2)+F(-2)的值;(2)若a=1,c=0,且|f(x)|≤1在区间(0,1]上恒成立,试求b的取值范围.22.(10分)已知函数(为常数,是自然对数的底数),曲线在点处的切线与轴平行.(1)求的值;(2)求的单调区间.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:从中任意取出三台,其中至少要有“快译通”和录音机各1台,有两种方法,一是2台和1台;二是1台和2台,分别求出取出的方法,即可求出所有的方法数.详解:由题意知本题是一个计数原理的应用,从中任意取出三台,其中至少要有“快译通”和录音机各1台,快译通2台和录音机1台,取法有种;快译通1台和录音机2台,取法有种,根据分类计数原理知共有种.故选:C.点睛:本题考查计数原理的应用,考查分类和分步的综合应用,本题解题的关键是看出符合条件的事件包含两种情况,是一个中档题目.2、C【解题分析】
作出相关图形,设正方体边长为1,求出与平面所成角正弦值即为答案.【题目详解】如图所示,正方体中,直线与平行,则直线与平面所成角正弦值即为与平面所成角正弦值.因为为等边三角形,则在平面即为的中心,则为与平面所成角.可设正方体边长为1,显然,因此,则,故答案选C.【题目点拨】本题主要考查线面所成角的正弦值,意在考查学生的转化能力,计算能力和空间想象能力.3、D【解题分析】由题意得,函数的图象关于点对称,则,即,解得,所以,则,令,解得或,当,则,函数单调递减,当,则,函数单调递增,所以,,所以函数的值域为,故选D.点睛:本题考查了函数的基本性质的应用,其中解答中涉及到利用导数研究函数的单调性,利用导数研究函数的最值,其中解答中根据函数的图象关于点对称,列出方程组,求的得值是解得关键,着重考查了学生分析问题和解答问题的能力.4、D【解题分析】
根据正态分布的对称性,求得指定区间的概率.【题目详解】由于,故,故选D.【题目点拨】本小题主要考查正态分布的对称性,考查正态分布指定区间的概率的求法,属于基础题.5、D【解题分析】
由三视图可知,该几何体由上下两部分组成,下面是一个底面边长为的正方形,高为的直四棱柱,上面是一个大圆与四棱柱的底面相切的半球,据此可以计算出结果.【题目详解】解:由三视图可知,该几何体由上下两部分组成,下面是一个底面边长为的正方形,高为的直四棱柱,上面是一个大圆与四棱柱的底面相切的半球.表面积.故选:D.【题目点拨】本题考查三视图求解几何体的表面积,属于基础题.6、C【解题分析】
命题的否定:任意变存在,并对结论进行否定.【题目详解】命题的否定需要将限定词和结论同时否定,题目中:为限定词,为条件,为结论;而的否定为,的否定为,所以的否定为故本题正确答案为C.【题目点拨】本题考查了命题的否定,属于简单题.7、D【解题分析】
由题意分两步进行,第一步为在6名学生中任选2名安排在两端两个窗户,可得方案数量,第二步为将剩余的6名学生平均分成2组,全排列后安排到剩下的2个窗户,两者方案数相乘可得答案.【题目详解】解:根据题意,分两步进行:①在6名学生中任选2名安排在两端两个窗户,有中情况;②将剩余的6名学生平均分成2组,全排列后安排到剩下的2个窗户,有种情况,则一共有种不同的安排方案,故选:D.【题目点拨】本题主要考查排列、组合及简单的计数问题,相对不难,注意运算准确.8、C【解题分析】分析:先根据题意画出图形,由已知条件可知三角形为直角三角形,且,再根据直角三角形射影定理可求得所求投影的值.详解:根据题意画出图像如下图所示,因为,所以为中点,所以是圆的直径,所以.由于,所以三角形为等边三角形,所以,根据直角三角形射影定理得,即.故选C.点睛:本小题主要考查圆的几何性质,考查向量加法的几何意义,考查直角三角形射影定理等知识.属于中档题.9、A【解题分析】试题分析:由得解得,再由得,所以,所以.考点:数列与基本不等式.【思路点晴】本题主要考查等比数列的基本元思想,考查基本不等式.第一步是解决等比数列的首项和公比,也即求出等比数列的基本元,在求解过程中,先对具体的数值条件进行化简,可求出,由此化简第一个条件,可得到;接下来第二步是基本不等式常用的处理技巧,先乘以一个常数,再除以这个常数,构造基本不等式结构来求.10、C【解题分析】
利用余弦定理可求得,再根据正弦定理可求得外接圆半径;由三棱柱特点可知外接球半径,求得后代入球的表面积公式即可得到结果.【题目详解】且由正弦定理可得外接圆半径:三棱柱的外接球半径:外接球表面积:本题正确选项:【题目点拨】本题考查多面体外接球表面积的求解问题,关键是能够明确外接球球心的位置,从而利用底面三角形外接圆半径和三棱柱的高,通过勾股定理求得外接球半径.11、B【解题分析】
由导数与极大值之间的关系求解.【题目详解】函数在极大值点左增右减,即导数在极大值点左正右负,观察导函数图象,在上有两个有两个零点满足.故选:B.【题目点拨】本题考查导数与极值的关系.属于基础题.12、B【解题分析】
利用分类计数原理,个位数字为时有;个位数字为或时均为,求和即可.【题目详解】由已知得:个位数字为的偶数有,个位数字为的偶数为,个位数字为的偶数有,所以符合条件的偶数共有.故选:B【题目点拨】本题考查了分类计数运算、排列、组合,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、②④【解题分析】
根据成立即可求得对称轴,由对称轴结合解析式即可求得的值,可判断①;根据及对称轴即可求得的值,可判断②;根据条件可得与的关系,结合二次函数的值域即可判断③;根据条件可知函数为偶函数,根据存在性成立及恒成立,转化为函数的值域即可判断④.【题目详解】对于①,因为对任意,均有成立,则的图像关于直线对称,所以解得.即是轴对称函数,不是周期函数,所以①错误;对于②,的图像关于直线对称,可得,解得,所以②正确;对于③,,而由可知则或.当时,代入可得,即,解不等式组可得,不等式无解,所以不成立当时,代入可得,即,解不等式组可得,即所以,所以,所以③错误;对于④,由可知函数为偶函数,当时,;当时,.所以在上的值域为在上的值域为因为存在使得成立所以只需且即,即实数的取值范围是,所以④正确综上可知,说法正确的是②④故答案为:②④【题目点拨】本题考查了函数的奇偶性、对称性及恒成立问题的综合应用,对于分类讨论思想的理解,属于难题。14、【解题分析】
由,得,分段求解析式,结合图象可得m的取值范围.【题目详解】解:,,时,,时,;时,;时,;当时,由,解得或,若对任意,都有,则。故答案为:。【题目点拨】本题考查函数与方程的综合运用,训练了函数解析式的求解及常用方法,考查数形结合的解题思想方法,属中档题.15、【解题分析】
由题意画出正方体,求出的面积,利用等体积法求解到平面的距离.【题目详解】由题意,画出正方体如图所示,,点是中点,所以,在中,,,,所以,,所以,设到平面的距离为,由,得,解得,.故答案为:【题目点拨】本题主要考查求点到平面距离的方法、棱锥体积公式、余弦定理和三角形面积公式的应用,考查等体积法的应用和学生的转化和计算能力,属于中档题.16、【解题分析】
将变为,利用二项式定理展开可知余数因不含因数的项而产生,从而可知余数为.【题目详解】由题意得:除以的余数为:本题正确结果:【题目点拨】本题考查余数问题的求解,考查学生对于二项式定理的掌握情况,关键是能够配凑出除数的形式,属于常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)或【解题分析】
(1)根据双曲线方程和椭圆方程的标准形式,可得同时成立,从而求出;(2)为真命题,为假命题,则、一真一假,再根据集合的交、补运算求得或.【题目详解】(1)若为真命题,则,解得:或.若为真命题,则,解得:.若和均为真命题时,则的取值范围为.(2)若为真命题,为假命题,则、一真一假.当真假时,解得:或当假真时,,无解综上所述:的取值范围为或.【题目点拨】本题以椭圆、双曲线方程的标准形式为背景,与简易逻辑知识进行交会,本质考查集合的基本运算.18、(1);(2).【解题分析】
由题意可得,,,联立求解即可得出;
设直线l的方程为:,,直线l的方程与椭圆方程联立化为:,根据共线以及共线,可得M,N的坐标.根据,可得又,再利用根与系数的关系即可得出.【题目详解】(1)由题意,知又,解得.所求椭圆的标准方程为.(2)由,设直线的方程为,代入椭圆的方程,并消去,得:,显然.设,则,于是.设,由共线,得,所以,同理,.因为,所以恒成立,解得.【题目点拨】本题考查了椭圆的标准方程及其性质,一元二次方程的根与系数的关系,向量数量积运算性质,考查了推理能力与计算能力,属于难题.19、(Ⅰ)f(x)的极小值是(Ⅱ)【解题分析】
(Ⅰ)对求导,并判断其单调性即可得出极值。(Ⅱ)化简成,转化成判断的最值。【题目详解】解:(Ⅰ),,,令,解得:,令,解得:,∴在递减,在递增,∴的极小值是;(Ⅱ)∵,由题意原不等式等价于在上恒成立,即,可得,设,则,令,得,(舍),当时,,当时,,∴当时,h(x)取得最大值,,∴,即a的取值范围是.【题目点拨】本题主要考查了函数极值的判断以及函数最值的问题,在解决此类问题时通常需要求二次导数或者构造新的函数再次求导。本题属于难题。20、(1)(2)【解题分析】试题分析:记A、B、C分别表示他们研制成功这件事,则由题意可得P(A)=,P(B)=,P(C)=.(1)他们都研制出疫苗的概率P(ABC)=P(A)•P(B)•P(C),运算求得结果.(2)他们能够研制出疫苗的概率等于,运算求得结果试题解析:设“A机构在一定时期研制出疫苗”为事件D,“B机构在一定时期研制出疫苗”为事件E,“C机构在一定时期研制出疫苗”为事件F,则P(D)=SKIPIF1<0,P(E)=SKIPIF1<0,P(F)=SKIPIF1<0(1)P(他们能研制出疫苗)=1-P(SKIPIF1<0)=SKIPIF1<0=SKIPIF1<0(2)P(至多有一个机构研制出疫苗)=SKIPIF1<0SKIPIF1<0)=SKIPIF1<0+SKIPIF1<0+SKIPIF1<0+P(SKIPIF1<0)=SKIPIF1<0+SKIPIF1<0+SKIPIF1<0+SKIPIF1<0=SKIPIF1<0考点:相互独立事件的概率乘法公式21、(1)8(2)[-2,0].【解题分析】
(1)根据函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 固定期限劳务派遣合同
- 2025年IT行业数据安全措施及整改计划
- 2025年智慧城市法律服务计划
- 2025年小学学校数字化教学计划
- 客户服务行业180天培训计划
- 生物学科综合实践教学计划
- 部编版五年级语文特色课程计划
- 2025年春小学语文教研组信息技术应用计划
- 幼儿园国际理解教育培训计划
- 绿色金融与造价咨询合同
- 人教版七年级数学下册《二元一次方程组》优质课说课课件
- 学校学生特异体质调查表
- 食用菌资源的开发及利用
- 二年级下册科学课件 11 不断发展的人工产品 人教版(26张PPT)
- 三.国际法习题之经典案例分析
- vmvare虚拟化平台巡检细则和方法
- 个人求职简历两页 (46)应聘履历参考模板可编辑修改
- 水下混凝土浇筑导管水密试验
- 非连续性文本阅读训练(六年级语文复习)
- 市政工程监理规划范本(完整版)
- 剪刀式升降机
评论
0/150
提交评论