河北省保定市涞水波峰中学2024届高二数学第二学期期末达标检测试题含解析_第1页
河北省保定市涞水波峰中学2024届高二数学第二学期期末达标检测试题含解析_第2页
河北省保定市涞水波峰中学2024届高二数学第二学期期末达标检测试题含解析_第3页
河北省保定市涞水波峰中学2024届高二数学第二学期期末达标检测试题含解析_第4页
河北省保定市涞水波峰中学2024届高二数学第二学期期末达标检测试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

河北省保定市涞水波峰中学2024届高二数学第二学期期末达标检测试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知某几何体的三视图如下,根据图中标出的尺寸(单位:),可得这个几何体的体积是()A. B. C. D.2.函数的图象大致为()A. B.C. D.3.已知的二项展开式的各项系数和为32,则二项展开式中的系数为()A.5 B.10 C.20 D.404.已知若存在,使得,则称与互为“1度零点函数”,若与互为“1度零点函数”,则实数的取值范围为()A. B. C. D.5.在掷一枚图钉的随机试验中,令,若随机变量X的分布列如下:010.3则()A.0.21 B.0.3 C.0.5 D.0.76.将曲线按照伸缩变换后得到的曲线方程为()A. B.C. D.7.设,若直线与圆相切,则的取值范围是()A. B.C. D.8.设,则的值为()A.2 B.2046 C.2043 D.-29.已知向量,满足,,则向量在向量方向上的投影为()A.0 B.1C.2 D.10.把圆x2+(y-2)A.线段 B.等边三角形C.直角三角形 D.四边形11.已知定圆,,定点,动圆满足与外切且与内切,则的最大值为()A. B. C. D.12.“杨辉三角”是中国古代重要的数学成就,在南宋数学家杨辉所著的《详解九章算法》一书中出现,它比西方的“帕斯卡三角形”早了300多年,如图是杨辉三角数阵,记为图中第行各个数之和,为的前项和,则A.1024 B.1023 C.512 D.511二、填空题:本题共4小题,每小题5分,共20分。13..14.设实数满足,则的最小值为______15.设当x=θ时,函数f(x)=2sinx+cosx取得最小值,则cos()=______.16.设随机变量ξ服从二项分布,则等于__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设函数.(1)当时,求关于的不等式的解集;(2)若在上恒成立,求的取值范围.18.(12分)已知函数.(Ⅰ)求函数的最大值,并求取最大值时的取值集合;(Ⅱ)若且,求.19.(12分)某高校共有15000人,其中男生10500人,女生4500人,为调查该校学生每周平均体育运动时间的情况,采用分层抽样的方法,收集300位学生每周平均体育运动时间的样本数据(单位:小时)(1)应收集多少位女生样本数据?(2)根据这300个样本数据,得到学生每周平均体育运动时间的频率分布直方图(如图所示),其中样本数据分组区间为:.估计该校学生每周平均体育运动时间超过4个小时的概率.(3)在样本数据中,有60位女生的每周平均体育运动时间超过4个小时.请完成每周平均体育运动时间与性别的列联表,并判断是否有的把握认为“该校学生的每周平均体育运动时间与性别有关”.附:

0.10

0.05

0.010

0.005

2.706

3.841

6.635

7.879

20.(12分)在直角坐标系中,曲线的参数方程为(为参数,),以原点为极点,轴的非负半轴为极轴建立极坐标系,曲线的极坐标方程为.(1)写出曲线的普通方程和曲线的直角坐标方程;(2)已知点是曲线上一点,若点到曲线的最小距离为,求的值.21.(12分)已知函数.(1)讨论的单调性;(2)当时,,记函数在上的最大值为,证明:.22.(10分)如图,棱锥P-ABCD的地面ABCD是矩形,PA⊥平面ABCD,PA=AD=2,BD=22(1)求证:BD⊥平面PAC;(2)求二面角P-CD-B的大小;(3)求点C到平面PBD的距离.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:由三视图知几何体是一个三棱锥,三棱锥的底面是一个边长为1,高为1的三角形,三棱锥的高为1,根据三棱锥的体积公式得到结果.详解:由三视图可知,几何体是一个三棱锥,三棱锥的底面是一个边长为,高为的三角形,面积,三棱锥的高是,所以故选C.点睛:当已知三视图去还原成几何体直观图时,首先根据三视图中关键点和视图形状确定几何体的形状,再根据投影关系和虚线明确内部结构,最后通过三视图验证几何体的正确性.2、A【解题分析】

根据题意,分析函数f(x)的奇偶性以及在区间(0,)上,有f(x)>0,据此分析选项,即可得答案.【题目详解】根据题意,f(x)=ln|x|(ln|x|+1),有f(﹣x)=ln|﹣x|(ln|﹣x|+1)=ln|x|(ln|x|+1)=f(x),则f(x)为偶函数,排除C、D,当x>0时,f(x)=lnx(lnx+1),在区间(0,)上,lnx<﹣1,则有lnx+1<0,则f(x)=lnx(lnx+1)>0,排除B;故选:A.【题目点拨】本题考查函数的图象分析,一般用排除法分析,属于基础题.3、B【解题分析】

首先根据二项展开式的各项系数和,求得,再根据二项展开式的通项为,求得,再求二项展开式中的系数.【题目详解】因为二项展开式的各项系数和,所以,又二项展开式的通项为=,,所以二项展开式中的系数为.答案选择B.【题目点拨】本题考查二项式展开系数、通项等公式,属于基础题.4、B【解题分析】

通过题意先求出函数的零点,根据计算出函数的零点范围,继而求出实数的取值范围【题目详解】令,当时,或,当时,解得,,若存在为“度零点函数”,不妨令由题意可得:或即或设,当时,,是减函数当时,,是增函数,当时,,由题意满足存在性实数的取值范围为故选【题目点拨】本题给出了新定义,按照新定义内容考查了函数零点问题,结合零点运用导数分离参量,求出函数的单调性,给出参量的取值范围,本题较为综合,需要转化思想和函数思想,有一定难度。5、D【解题分析】

先由概率和为1,求出,然后即可算出【题目详解】因为,所以所以故选:D【题目点拨】本题考查的是离散型随机变量的分布列的性质及求由分布列求期望,较简单.6、B【解题分析】

根据伸缩变换的关系表示已知函数的坐标,代入已知函数的表示式得解.【题目详解】由伸缩变换,得,代入,得,即.选B【题目点拨】本题考查函数图像的伸缩变换,属于基础题.7、C【解题分析】分析:由直线与圆相切,得,从而,进而,由此能求出的取值范围.详解:,直线与圆相切,圆心到直线的距离,解得,,,,的取值范围是.故选C.点睛:本题考查代数和取值范围的求法,考查直线方程、圆、点到直线的距离公式、基本不等式等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是中档题.8、D【解题分析】分析:先令得,再令得,解得结果.详解:令得令得=0因此,选D.点睛:“赋值法”普遍适用于恒等式,是一种重要的方法,对形如的式子求其展开式的各项系数之和,常用赋值法,只需令即可;对形如的式子求其展开式各项系数之和,只需令即可.9、D【解题分析】试题分析:在方向上的投影为,故选D.考点:向量的投影.10、B【解题分析】

通过联立方程直接求得交点坐标,从而判断图形形状.【题目详解】联立x2+(y-2)2=1与x2【题目点拨】本题主要考查圆与椭圆的交点问题,难度不大.11、A【解题分析】

将动圆的轨迹方程表示出来:,利用椭圆的性质将距离转化,最后利用距离关系得到最值.【题目详解】定圆,,动圆满足与外切且与内切设动圆半径为,则表示椭圆,轨迹方程为:故答案选A【题目点拨】本题考查了轨迹方程,椭圆的性质,利用椭圆性质变换长度关系是解题的关键.12、B【解题分析】

依次算出前几行的数值,然后归纳总结得出第行各个数之和的通项公式,最后利用数列求和的公式,求出【题目详解】由题可得:,,,,,依次下推可得:,所以为首项为1,公比为2的等比数列,故;故答案选B【题目点拨】本题主要考查杨辉三角的规律特点,等比数列的定义以及前项和的求和公式,考查学生归纳总结和计算能力,属于基础题。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】试题分析:考点:定积分14、-3【解题分析】

作出不等式组对应的平面区域,设,利用目标函数的几何意义,利用数形结合确定的最小值,得到答案.【题目详解】由题意,画出约束条件所对应的平面区域,如图所示,设,则,当直线过点A时,直线在轴上的截距最大,此时目标函数取得最小值,由,解得,所以目标函数的最小值为.【题目点拨】本题主要考查简单线性规划求解目标函数的最值问题.其中解答中正确画出不等式组表示的可行域,利用“一画、二移、三求”,确定目标函数的最优解是解答的关键,着重考查了数形结合思想,及推理与计算能力,属于基础题.15、【解题分析】

利用辅助角公式化简函数的解析式,再根据正弦函数的最值求出辅助角,再利用两角和的余弦公式求出的值.【题目详解】对于函数f(x)=2sinx+cosx=sin(x+α),其中,cosα=,sinα=,α为锐角.当x=θ时,函数取得最小值,∴sin(θ+α)=-,即sin(θ+α)=-1,∴cos(θ+α)=1.故可令θ+α=-,即θ=--α,故故答案为.【题目点拨】本题主要考查辅助角公式,正弦函数的最值,两角和的余弦公式,属于中档题.16、【解题分析】

利用独立重复试验的概率计算出、、、,再将这些相加可得出.【题目详解】由于,所以,,,,,因此,,故答案为:.【题目点拨】本题考查二项分布独立重复试验的概率,解这类问题要注意将基本事件列举出来,关键在于灵活利用独立重复试验的概率公式进行计算,考查计算能力,属于中等题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)【解题分析】

(1)根据绝对值的意义,取到绝对值号,得到分段函数,进而可求解不等式的解集;(2)因为,得,再利用绝对值的定义,去掉绝对值号,即可求解。【题目详解】(1)因为,所以的解集为.(2)因为,所以,即,则,所以.【题目点拨】本题主要考查了绝对值不等式问题,对于含绝对值不等式的解法有两个基本方法,一是运用零点分区间讨论,二是利用绝对值的几何意义求解.法一是运用分类讨论思想,法二是运用数形结合思想,将绝对值不等式与函数以及不等式恒成立交汇、渗透,解题时强化函数、数形结合与转化化归思想方法的灵活应用,这是命题的新动向.18、(Ⅰ),(Ⅱ)【解题分析】

(Ⅰ)利用三角恒等变换化简函数的解析式,再根据正弦函数的最值,求出取最大值时的取值集合.(Ⅱ)根据且,求得,再利用两角差的余弦公式求出.【题目详解】(Ⅰ)∴,由,得(Ⅱ)由得,得若,则,所以,∴.【题目点拨】本题主要考查三角恒等变换,正弦函数的最值,两角和差的三角公式的应用,属于中档题.19、(1)90;(2)0.75;(3)有的把握认为“该校学生的每周平均体育运动时间与性别有关”.【解题分析】试题分析:(1)由分层抽样性质,得到;(2)由频率分布直方图得;(3)利用2×2列联表求.试题解析:(1)由,所以应收集90位女生的样本数据.(2)由频率发布直方图得,该校学生每周平均体育运动时间超过4小时的概率为0.75.(3)由(2)知,300位学生中有300×0.75=225人的每周平均体育运动时间超过4小时,75人平均体育运动时间不超过4小时,又因为样本数据中有210份是关于男生的,90份是关于女生的,所以平均体育运动时间与性别列联表如下:每周平均体育运动时间与性别列联表男生女生总计每周平均体育运动时间不超过4小时453075每周平均体育运动时间超过4小时16560225总计21090300结合列联表可算得有95%的把握认为“该校学生的平均体育运动时间与性别有关”点睛:利用频率分布直方图求众数、中位数与平均数时,易出错,应注意区分这三者.在频率分布直方图中:(1)最高的小长方形底边中点的横坐标即是众数;(2)中位数左边和右边的小长方形的面积和是相等的;(3)平均数是频率分布直方图的“重心”,等于频率分布直方图中每个小长方形的面积乘以小长方形底边中点的横坐标之和.20、(1),;(2)或【解题分析】

分析:(1)由曲线的参数方程,利用代入法消去参数,可得的普通方程,由曲线的极坐标方程得,利用互化公式可得的直角坐标方程;(2)设曲线上任意一点为,,利用点到直线距离公式结合辅助角公式,由三角函数的有界性可得结果.详解:(1)由曲线的参数方程,消去参数,可得的普通方程为:.由曲线的极坐标方程得,,∴曲线的直角坐标方程为.(2)设曲线上任意一点为,,则点到曲线的距离为.∵,∴,,当时,即;当时,.∴或.点睛:参数方程主要通过代入法或者已知恒等式(如等三角恒等式)消去参数化为普通方程,通过选取相应的参数可以把普通方程化为参数方程,利用关系式,等可以把极坐标方程与直角坐标方程互化,这类问题一般我们可以先把曲线方程化为直角坐标方程,用直角坐标方程解决相应问题.21、(1)单调递减区间为,单调递增区间为;(2)见解析.【解题分析】

(1)利用导数求函数的单调性即可;(2)对求导,得,因为,所以,令,求导得在上单调递增,,使得,进而得在上单调递增,在上单调递减;所以,令,求导得在上单调递增,进而求得m的范围.【题目详解】(1)因为,所以,当时,;当时,,故的单调递减区间为,单调递增区间为.(2)当时,,则,当时,,令,则,所以在上单调递增,因为,,所以存在,使得,即,即.故当时,,此时;当时,,此时.即在上单调递增,在上单调递减.则.令,,则.所以在上单调递增,所以,.故成立.【题目点拨】本题考查了利用导数求函数的单调性和取值范围,也考查了构造新函数,转化思想,属于中档题.22、(1)见解析;(2)θ=45°;(3)23【解题分析】

(1)先证明ABCD为正方形,可得BD⊥AC,由PA⊥平面ABCD,BD⊂平面ABCD,可得BD⊥PA,利用线面垂直的判定定理可得结果;(2)以AB,AD,AP为x,y,z轴建立空间直角坐标系,根据向量垂直数量积为零,列方程组求出平面PCD的法向量,结合(0,0,2)为平面ABCD的法向量,利用空间向量夹角余弦公式求出两个向量的夹角余弦,进而转化为二面角P-CD-B的平面角即可;(3)求出平面PBD的法向量,再求出平面的斜线PC所在的向量PC,然后求出PC【题目详解】(1)解法一:在RtΔBAD中,AD=2,BD=22∴AB=2,∴ABCD为正方形,因此BD⊥AC,∵PA⊥平面ABCD,BD⊂平

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论