版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届江西省新余四中、鹰潭一中等重点中学盟校数学高二第二学期期末达标检测模拟试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设等差数列的前n项和为,若,则()A.3 B.4 C.5 D.62.下列函数中,既是偶函数,又在区间上单调递减的函数是()A. B. C. D.3.有8件产品,其中4件是次品,从中有放回地取3次(每次1件),若X表示取得次品的次数,则()A. B. C. D.4.已知复数满足(为虚数单位),则共轭复数等于()A. B. C. D.5.已知直线与圆交于两点,且(其中为坐标原点),则实数的值为A. B. C.或 D.或6.函数的定义域是()A. B. C. D.7.若为纯虚数,则实数的值为()A.-2 B.2 C.-3 D.38.过三点,,的圆交y轴于M,N两点,则()A.2 B.8 C.4 D.109.某商场进行购物摸奖活动,规则是:在一个封闭的纸箱中装有标号分别为1,2,3,4,5,6的六个小球,每次摸奖需要同时取出两个球,每位顾客最多有两次摸奖机会,并规定:若第一次取出的两球号码连号,则中奖,摸奖结束;若第一次未中奖,则将这两个小球放回后进行第二次摸球,若与第一次取出的两个小球号码相同,则为中奖,按照这样的规则摸奖,中奖的概率为()A. B. C. D.10.甲乙两队进行排球比赛,已知在一局比赛中甲队获胜的概率是23A.2027B.49C.811.由0,1,2,3组成无重复数字的四位数,其中0与2不相邻的四位数有A.6个 B.8个 C.10个 D.12个12.已知m,n是两条不同的直线,是两个不同的平面,则下列命题正确的是()A.若m,n没有公共点,则B.若,,则C.若,则D.若,则二、填空题:本题共4小题,每小题5分,共20分。13.已知函数对任意的都有,那么不等式的解集为_________。14.设抛物线的准线方程为__________.15.已知函数设函数有4个不同的零点,则实数的取值范围是_______.16.设等差数列的前项和为,则成等差数列.类比以上结论有:设等比数列的前项积为,则,__________,成等比数列.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,为的导函数.证明:(1)在区间存在唯一极小值点;(2)有且仅有个零点.18.(12分)已知在的展开式中,只有第5项的二项式系数最大.(1)求含的项的系数;(2)求展开式中所有的有理项.19.(12分)已知,p:;q:不等式对任意实数x恒成立.(1)若q为真命题,求实数m的取值范围;(2)如果“”为真命题,且“”为假命题,求实数m的取值范围.20.(12分)已知的展开式中的二项式系数之和比各项系数之和大(1)求展开式所有的有理项;(2)求展开式中系数最大的项.21.(12分)为了调查喜欢看书是否与性别有关,某校调查小组就“是否喜欢看书”这个问题,在全校随机调研了100名学生.(1)完成下列列联表:喜欢看书不喜欢看书合计女生1550男生25合计100(2)能否在犯错率不超过0.025的前提下认为“喜欢看书与性别有关”.附:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828(参考公式:,其中)22.(10分)已知椭圆的焦距为2,左右焦点分别为,以原点为圆心,以椭圆的短半轴长为半径的圆与直线相切.(1)求椭圆的方程;(2)设不过原点的直线与椭圆C交于两点,若直线与的斜率分别为,且,求证:直线过定点,并求出该定点的坐标;
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
由又,可得公差,从而可得结果.【题目详解】是等差数列又,∴公差,,故选C.【题目点拨】本题主要考查等差数列的通项公式与求和公式的应用,意在考查灵活应用所学知识解答问题的能力,属于中档题.2、B【解题分析】
根据函数单调性和奇偶性的性质分别对选项进行判断即可【题目详解】对于A,为奇函数,在区间为单调增函数,不满足题意;对于B,为偶函数,在区间上为单调递减的函数,故B满足题意;对于C,为偶函数,在区间上为周期函数,故C不满足题意;对于D,为偶函数,在区间为单调增函数,故D不满足题意;故答案选B【题目点拨】本题主要考查函数奇偶性和单调性的判断,要求熟练掌握常见函数的奇偶性和单调性的性质.3、D【解题分析】
首先把取一次取得次品的概率算出来,再根据离散型随机变量的概率即可算出.【题目详解】因为是有放回地取产品,所以每次取产品取到次品的概率为.从中取3次,为取得次品的次数,则,,选择D答案.【题目点拨】本题考查离散型随机变量的概率,解题时要注意二项分布公式的灵活运用.属于基础题.4、D【解题分析】试题分析:由题意得考点:复数运算5、C【解题分析】分析:利用OA⊥OB,OA=OB,可得出三角形AOB为等腰直角三角形,由圆的标准方程得到圆心坐标与半径R,可得出AB,求出AB的长,圆心到直线y=﹣x+a的距离为AB的一半,利用点到直线的距离公式列出关于a的方程,求出方程的解即可得到实数a的值.详解:∵OA⊥OB,OA=OB,∴△AOB为等腰直角三角形,又圆心坐标为(0,0),半径R=1,∴AB=.∴圆心到直线y=﹣x+a的距离d=AB==,∴|a|=1,∴a=±1.故答案为C.点睛:这个题目考查的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理和垂径定理.6、D【解题分析】
根据求具体函数的基本原则:分母不为零、偶次根式被开方数非负、对数中真数为正数列不等式解出的取值范围,即为函数的定义域.【题目详解】由题意可得,即,解得,因此,函数的定义域为,故选D.【题目点拨】本题考查具体函数的定义域的求解,求解原则如下:(1)分式中分母不为零;(2)偶次根式中被开方数非负;(3)对数中真数大于零,底数大于零且不为;(4)正切函数中,;(5)求定义域只能在原函数解析式中求,不能对解析式变形.7、C【解题分析】
本题首先可以确定复数的实部和虚部,然后根据纯虚数的相关性质即可列出方程组,通过计算即可得出结果.【题目详解】因为为纯虚数,所以,解得,故选C.【题目点拨】本题考查复数的相关性质,主要考查纯虚数的相关性质,纯虚数的实部为0且虚部不为0,考查运算求解能力,考查方程思想,是简单题.8、C【解题分析】
由已知得,,所以,所以,即为直角三角形,其外接圆圆心为AC中点,半径为长为,所以外接圆方程为,令,得,所以,故选C.考点:圆的方程.9、B【解题分析】
可将中奖的情况分成第一次两球连号和第二次取出的小球与第一次取出的号码相同两种情况,分别计算两种情况的概率,根据和事件概率公式可求得结果.【题目详解】中奖的情况分为:第一次取出两球号码连号和第二次取出两个小球与第一次取出的号码相同两种情况第一次取出两球连号的概率为:第二次取出两个小球与第一次取出号码相同的概率为:中奖的概率为:本题正确选项:【题目点拨】本题考查和事件概率问题的求解,关键是能够根据题意将所求情况进行分类,进而通过古典概型和积事件概率求解方法求出每种情况对应的概率.10、A【解题分析】试题分析:“甲队获胜”包括两种情况,一是2:0获胜,二是2:1获胜.根据题意若是甲队2:0获胜,则比赛只有2局,其概率为(23)2=49;若是甲队2:1获胜,则比赛3局,其中第3考点:相互独立事件的概率及n次独立重复试验.【方法点晴】本题主要考查了相互独立事件的概率及n次独立重复试验,属于中档题.本题解答的关键是读懂比赛的规则,尤其是根据“采用三局两胜制比赛,即先胜两局者获胜且比赛结束”把整个比赛所有的可能情况分成两类,甲队以2:0获胜或2:1获胜,据此分析整个比赛过程中的每一局的比赛结果,根据相互独立事件的概率乘法公式及n次独立重复试验概率公式求得每种情况的概率再由互斥事件的概率加法公式求得答案.11、B【解题分析】分析:首先求由0,1,2,3组成无重复数字的四位数:先排千位数,有种排法,再排另外3个数,有种排法,利用乘法原理能求出组成没有重复数字的四位数的个数;然后求数字0,2相邻的情况:,先把0,2捆绑成一个数字参与排列,再减去0在千位的情况,由此能求出其中数字0,2相邻的四位数的个数.最后,求得0与2不相邻的四位数详解:由数字0,1,2,3组成没有重复数字的四位数有:.
其中数字0,2相邻的四位数有:则0与2不相邻的四位数有。故选B点睛:本题考查排列数的求法,考查乘法原理、排列、捆绑法,间接法等基础知识,考查推理论证能力、运算求解能力,考查化归与转化思想、函数与方程思想,是基础题.12、D【解题分析】
由空间中点、线、面位置关系的判定与性质依次对选项进行判断,由此得到答案。【题目详解】两条直线没有公共点有平行和异面两种情形,故A,B错;对于C,还存在的情形:由线面垂直的性质可得D对,故选D.【题目点拨】本题考查学生对空间中点、线、面的位置关系的理解与掌握,重点考查学生的空间想象能力,属于中档题。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
首先构造函数,根据函数的单调性和特殊值解得答案.【题目详解】构造函数,则在R单调减,【题目点拨】本题考查了利用函数单调性解不等式的知识,根据等式特点熟练构造出函数是本题的关键.14、【解题分析】
由题意结合抛物线的标准方程确定其准线方程即可.【题目详解】由抛物线方程可得,则,故准线方程为.故答案为:.【题目点拨】本题主要考查由抛物线方程确定其准线的方法,属于基础题.15、,【解题分析】
由题意可得有4个不等实根,作出的图象,通过图象即可得到所求范围.【题目详解】函数有4个不同的零点,即为有4个不等实根,作出的图象,可得时,与的图象有4个交点,故答案为:,.【题目点拨】本题考查函数的零点个数,考查函数与方程思想、数形结合思想,考查逻辑推理能力,求解时注意准确画出函数的图象是关键.16、【解题分析】由于等差数列的特征是差,等比数列的特征是比,因此运用类比推理的思维方法可得:,,成等比数列,应填答案。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)证明见解析;(2)证明见解析【解题分析】
(1)令,然后得到,得到的单调性和极值,从而证明在区间存在唯一极小值点;(2)根据的正负,得到的单调性,结合,,的值,得到的图像,从而得到的单调性,结合和的值,从而判断出有且仅有个零点.【题目详解】(1)令,,当时,恒成立,当时,.∴在递增,,.故存在使得,时,时,.综上,在区间存在唯一极小值点.(2)由(1)可得时,,单调递减,时,,单调递增.且,.故的大致图象如下:当时,,∴此时,单调递增,而.故存在,使得故在上,的图象如下:综上,时,,时,,时,.∴在递增,在递减,在递增,而,,又当时,,恒成立.故在上的图象如下:∴有且仅有个零点.【题目点拨】本题考查利用导数研究函数的单调性和极值,利用导数研究函数零点个数,属于中档题.18、(1)-16;(2).【解题分析】
(1)根据第5项的二项式系数最大可得的值.由二项式定理展开通项,即可求得含的项的系数;(2)由二项式定理展开通项,即可求得有理项.【题目详解】∵只有第5项的二项式系数最大,∴二项式的幂指数是偶数,那么其展开式的中间一项的二项式的系数最大,∴,解得.(1).其展开式的通项.令,得.∴含的项的系数为;(2)由,得,由,得(舍),由,得,由,得.∴展开式中的有理项为:.【题目点拨】本题考查了二项式定理展开的应用,有理项的求法,属于基础题.19、(1)(2)【解题分析】
(1)解不等式即得解;(2)由“”为真,且“”为假知p,q一真假,再分两种情况分析讨论得解.【题目详解】(1)由“不等式对任意实数x恒成立”为真得,解得,故实数m的取值范围为.(2)由“”为真得m的取值范围为,由“”为真,且“”为假知p,q一真假,当p真q假时,有,此时m无解;当p假q真时,有,解得或;综上所述,m的取值范围为.【题目点拨】本题主要考查二次不等式的恒成立问题,考查复合命题真假的判断,意在考查学生对这些知识的理解掌握水平.20、(1);(2)【解题分析】
令可得展开式的各项系数之和,而展开式的二项式系数之和为,列方程可求的值及通项,(1)为整数,可得的值,进而可得展开式中所有的有理项;(2)假设第项最大,且为偶数,则,解出的值,进而可求得系数最大的项.【题目详解】解:令可得,展开式中各项系数之和为,而展开式中的二项式系数之和
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 货币金融学写作课程设计
- 年度动态心电图监测系统设备市场分析及竞争策略分析报告
- 2025年度绿色建材木糠原料采购合同2篇
- 市政施工方案优化
- 饮品制作与服务课程设计
- 超强资料-临床麻醉学课件严重创伤病人的麻醉
- 2025年度个人沙石行业合作与资源共享合同3篇
- 2025年度旅游度假村广告合作与综合服务合同4篇
- 二零二五年度2025版互联网医疗合伙人合作合同模板3篇
- 二零二五年酒店特色餐饮品牌授权合同3篇
- 北师大版小学三年级上册数学第五单元《周长》测试卷(含答案)
- 国家安全责任制落实情况报告3篇
- DB45T 1950-2019 对叶百部生产技术规程
- 2024年度顺丰快递冷链物流服务合同3篇
- 六年级下册【默写表】(牛津上海版、深圳版)(汉译英)
- 合同签订培训
- 新修订《保密法》知识考试题及答案
- 电工基础知识培训课程
- 铁路基础知识题库单选题100道及答案解析
- 金融AI:颠覆与重塑-深化理解AI在金融行业的实践与挑战
- 住宅楼安全性检测鉴定方案
评论
0/150
提交评论