安徽省二校联考2024届数学高二第二学期期末教学质量检测试题含解析_第1页
安徽省二校联考2024届数学高二第二学期期末教学质量检测试题含解析_第2页
安徽省二校联考2024届数学高二第二学期期末教学质量检测试题含解析_第3页
安徽省二校联考2024届数学高二第二学期期末教学质量检测试题含解析_第4页
安徽省二校联考2024届数学高二第二学期期末教学质量检测试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

安徽省二校联考2024届数学高二第二学期期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.下列函数中,既是奇函数又在内单调递增的函数是()A. B. C. D.2.若则有()A. B.C. D.3.己知函数,若,则()A. B. C. D.4.现有四个函数:①;②;③;④的图象(部分)如下,则按照从左到右图象对应的函数序号安排正确的一组是()A.①④②③ B.①④③② C.④①②③ D.③④②①5.函数f(x)=ln(A. B. C. D.6.已知复数满足(为虚数单位),其中是的共轭复数,,则复数的虚部为()A. B. C. D.7.已知的展开式中第5项与第7项的二项式系数相等,则奇数项的二项式系数和为()A. B. C. D.8.在复平面内,复数(为虚数单位)对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.的展开式中的常数项为()A. B. C. D.10.设是函数的定义域,若存在,使,则称是的一个“次不动点”,也称在区间I上存在“次不动点”.若函数在上存在三个“次不动点”,则实数的取值范围是()A. B. C. D.11.若,则,.设一批白炽灯的寿命(单位:小时)服从均值为1000,方差为400的正态分布,随机从这批白炽灯中选取一只,则()A.这只白炽灯的寿命在980小时到1040小时之间的概率为0.8186B.这只白炽灯的寿命在600小时到1800小时之间的概率为0.8186C.这只白炽灯的寿命在980小时到1040小时之间的概率为0.9545D.这只白炽灯的寿命在600小时到1800小时之间的概率为0.954512.若的展开式中的第五、六项二项式系数最大,则该展开式中常数项为()A. B.84 C. D.36二、填空题:本题共4小题,每小题5分,共20分。13.将集合中所有的数按照上小下大,左小右大的原则写成如下的三角形表:则该数表中,从小到大第50个数为__________.14.函数的图象在处的切线与直线互相垂直,则_____.15.若的展开式中,常数项为5670,则展开式中各项系数的和为____.16.某微信群中甲、乙、丙、丁、戊五名成员先后抢4个不相同的红包,每人最多抢一个红包,且红包全被抢光,则甲乙两人都抢到红包的情况有________种三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在处有极值.(1)求a,b的值;(2)求的单调区间.18.(12分)已知函数,,若曲线和曲线在处的切线都垂直于直线.(Ⅰ)求,的值.(Ⅱ)若时,,求的取值范围.19.(12分)在区间上任取一个数记为a,在区间上任取一个数记为b.若a,,求直线的斜率为的概率;若a,,求直线的斜率为的概率.20.(12分)已知函数,.(1)当时,求函数的单调区间和极值;(2)若对于任意,都有成立,求实数的取值范围;(3)若,且,证明:.21.(12分)已知函数的定义域为,且对任意实数恒有(且)成立.(1)求函数的解析式;(2)讨论在上的单调性,并用定义加以证明.22.(10分)已知函数.(1)求函数的单调区间;(2)当时,证明:对任意的,.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

由基本初等函数的单调性和奇偶性,对A、B、C、D各项分别加以验证,不难得到正确答案.【题目详解】解:对于A,因为幂函数y=x3是R上的增函数,所以y=﹣x3是(0,+∞)上的减函数,故A不正确;对于B,为偶函数,且在上没有单调性,所以B不正确;对于C,在区间(0,1)上是减函数,在区间(1,+∞)上是增函数,故C不正确;对于D,若f(x)=x|x|,则f(﹣x)=﹣x|x|=﹣f(x),说明函数是奇函数,而当x∈(0,+∞)时,f(x)=x2,显然是(0,+∞)上的增函数,故D正确;故选:D.【题目点拨】本题考查了函数奇偶性和单调性的判断与证明,属于基础题.2、D【解题分析】①,∵,∴,故.②,,∴,故.综上.选D.3、D【解题分析】分析:首先将自变量代入函数解析式,利用指对式的运算性质,得到关于参数的等量关系式,即可求得结果.详解:根据题意有,解得,故选D.点睛:该题考查的是已知函数值求自变量的问题,在求解的过程中,需要对指数式和对数式的运算性质了如指掌.4、A【解题分析】

根据各个函数的奇偶性、函数值的符号,判断函数的图象特征,即可得到.【题目详解】解:①为偶函数,它的图象关于轴对称,故第一个图象即是;

②为奇函数,它的图象关于原点对称,它在上的值为正数,

在上的值为负数,故第三个图象满足;

③为奇函数,当时,,故第四个图象满足;

④,为非奇非偶函数,故它的图象没有对称性,故第二个图象满足,

故选A.【题目点拨】本题主要考查函数的图象,函数的奇偶性、函数的值的符号,属于中档题.5、C【解题分析】因为fx=lnx2-4x+4x-23=lnx-22x-23,所以函数fx的图象关于点(2,0)对称,6、A【解题分析】分析:设,利用的共轭复数是,列出方程组求a、b的值即可.详解:设,的共轭复数是,又,,又,,.故选:A.点睛:本题主要考查了复数的共轭复数与代数运算的应用问题.7、A【解题分析】由题意可得:,由二项式系数的性质可得:奇数项的二项式系数和为.本题选择A选项.点睛:1.二项展开式的通项是展开式的第k+1项,这是解决二项式定理有关问题的基础.在利用通项公式求指定项或指定项的系数要根据通项公式讨论对k的限制.2.因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.3.二项式定理的应用主要是对二项展开式正用、逆用,要充分利用二项展开式的特点和式子间的联系.8、B【解题分析】

对复数进行整理化简,从得到其在复平面所对应的点,得到答案.【题目详解】复数,所以复数在复平面对应的点的坐标为,位于第二象限.故选:B.【题目点拨】本题考查复数的乘法运算,考查复数在复平面对应点所在象限,属于简单题.9、C【解题分析】

化简二项式的展开式,令的指数为零,求得常数项.【题目详解】二项式展开式的通项为,令,故常数项为,故选C.【题目点拨】本小题主要考查二项式展开式的通项公式,考查二项式展开式中的常数项,属于基础题.10、A【解题分析】

由已知得在上有三个解。即函数有三个零点,求出,利用导函数性质求解。【题目详解】因为函数在上存在三个“次不动点”,所以在上有三个解,即在上有三个解,设,则,由已知,令得,即或当时,,;,,要使有三个零点,则即,解得;当时,,;,,要使有三个零点,则即,解得;所以实数的取值范围是故选A.【题目点拨】本题考查方程的根与函数的零点,以及利用导函数研究函数的单调性,属于综合体。11、A【解题分析】

先求出,,再求出和,即得这只白炽灯的寿命在980小时到1040小时之间的概率.【题目详解】∵,,∴,,所以,,∴.故选:A【题目点拨】本题主要考查正态分布的图像和性质,考查指定区间的概率的计算,意在考查学生对这些知识的理解掌握水平和分析推理能力.12、B【解题分析】

先由的展开式中的第五、六项二项式系数最大,求解n,写出通项公式,令,求出r代入,即得解.【题目详解】由于的展开式中的第五、六项二项式系数最大,故,二项式的通项公式为:令可得:故选:B【题目点拨】本题考查了二项式定理的应用,考查了学生概念理解,转化划归,数学运算的能力,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、1040【解题分析】用表示,下表的规律为:…,则第行的第个数,,故答案为.【方法点睛】本题归纳推理以及等差数列的求和公式,属于中档题.归纳推理的一般步骤:一、通过观察个别情况发现某些相同的性质.二、从已知的相同性质中推出一个明确表述的一般性命题(猜想).常见的归纳推理分为数的归纳和形的归纳两类:(1)数的归纳包括数的归纳和式子的归纳,解决此类问题时,需要细心观察,寻求相邻项及项与序号之间的关系,同时还要联系相关的知识,如等差数列、等比数列等;(2)形的归纳主要包括图形数目的归纳和图形变化规律的归纳.14、1.【解题分析】

求函数的导数,根据导数的几何意义结合直线垂直的直线斜率的关系建立方程关系进行求解即可.【题目详解】函数的图象在处的切线与直线垂直,函数的图象在的切线斜率本题正确结果:【题目点拨】本题主要考查直线垂直的应用以及导数的几何意义,根据条件建立方程关系是解决本题的关键.15、256【解题分析】

根据二项式展开式的通项公式求得,再用赋值法求出各项系数的和.【题目详解】由二项式的展开式的通项公式得,则所以所以所以再令得展开式中各项系数的和故答案为【题目点拨】本题考查二项式展开式中的特定项和各项系数和,属于中档题.16、72【解题分析】第一步甲乙抢到红包,有种,第二步其余三人抢剩下的两个红包,有种,所以甲乙两人都抢到红包的情况有种.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),.(2)单调减区间是,单调增区间是.【解题分析】

(1)先对函数求导,得到,再由题意,列出方程组,求解,即可得出结果;(2)由(1)的结果,得到,对其求导,解对应的不等式,即可得出单调区间.【题目详解】解:(1)又在处有极值,即解得,.(2)由(1)可知,其定义域是,.由,得;由,得.函数的单调减区间是,单调增区间是.【题目点拨】本题主要考查由函数极值求参数,以及导数的方法求单调区间的问题,通常需要对函数求导,利用导数的方法求解即可,属于常考题型.18、(Ⅰ),(Ⅱ)的取值范围是.【解题分析】试题分析:(Ⅰ)根据导数的几何意义求解即可.(Ⅱ)由(Ⅰ)设,则,故只需证即可.由题意得,即,又由,得,,分,,三种情况分别讨论判断是否恒成立即可得到结论.试题解析:(I)∵,∴,,由题意得,,解得,.∴,.(II)由(I)知,,设,则,由题设可得,即,令,得,.(i)若,则,从而当时,,单调递减,当时,,单调递增,故在的最小值为,而,故当时,,即恒成立.(ii)若,则,从而当时,,即在单调递增,而,故当时,,即恒成立.(iii)若,,则在上单调递增,而,从而当时,不可能恒成立,综上可得的取值范围是.19、(1);(2).【解题分析】

,2,3,4,1,6,,2,3,4,1,基本事件总数,再列出满足条件的基本事件有6个,由古典概型概率计算公式求解;有序实数对满足,而满足直线的斜率为,即,画出图形,由测度比是面积比得答案.【题目详解】解:在区间上任取一个数记为a,在区间上任取一个数记为b,a,,,2,3,4,1,6,,2,3,4,1.基本事件总数,直线的斜率为,即,也就是,满足条件的基本事件有6个,分别是:,,,,,,直线的斜率为的概率;在区间上任取一个数记为a,在区间上任取一个数记为b,a,,有序实数对满足,而满足直线的斜率为,即,如图:,.直线的斜率为的概率.【题目点拨】本题考查概率的求法,注意列举法和几何概型的合理运用,是中档题.20、(1)答案见解析;(2);(3)证明见解析.【解题分析】

(1),①时,因为,所以,函数的单调递增区间是,无单调递减区间,无极值;②当时,令,解得,当时,;当,.所以函数的单调递减区间是,单调递增区间是,在区间上的极小值为,无极大值.(2)由题意,,即问题转化为对于恒成立,即对于恒成立,令,则,令,则,所以在区间上单调递增,故,故,所以在区间上单调递增,函数.要使对于恒成立,只要,所以,即实数k的取值范围为.(3)证法1因为,由(1)知,函数在区间上单调递减,在区间上单调递增,且.不妨设,则,要证,只要证,即证.因为在区间上单调递增,所以,又,即证,构造函数,即,.,因为,所以,即,所以函数在区间上单调递增,故,而,故,所以,即,所以成立.证法2要证成立,只要证:.因为,且,所以,即,,即,,同理,从而,要证,只要证,令不妨设,则,即证,即证,即证对恒成立,设,,所以在单调递增,,得证,所以.21、(1)(2)当时,在上为单调减函数;当时,在上为单调增函数.【解题分析】试题分析:(1)①,用替换①式中的有:②,由①②消去即可得结果;(2)讨论两种情况,分别利用复合函数的单调性判断其单调性,再利用定义意且,判定的符合,即可证明结论.试题解析:(1)∵对任意实数恒有:①,用替换①式中的有:②,①×②—②得:,(2)当时,函数为单调减函数,函数也为单调减函数,∴在上为单调减函数.当时,函数为单调增函数,函数也为单调增函数,∴在上为单调增函数.证明:设任意且,则,∵,,①当时,则,∴∴在上是减函数.

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论