2024届广东深圳华师附中高二数学第二学期期末经典试题含解析_第1页
2024届广东深圳华师附中高二数学第二学期期末经典试题含解析_第2页
2024届广东深圳华师附中高二数学第二学期期末经典试题含解析_第3页
2024届广东深圳华师附中高二数学第二学期期末经典试题含解析_第4页
2024届广东深圳华师附中高二数学第二学期期末经典试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届广东深圳华师附中高二数学第二学期期末经典试题注意事项1.考试结束后,请将本试卷和答题卡一并交回.2.答题前,请务必将自己的姓名、准考证号用0.5毫米黑色墨水的签字笔填写在试卷及答题卡的规定位置.3.请认真核对监考员在答题卡上所粘贴的条形码上的姓名、准考证号与本人是否相符.4.作答选择题,必须用2B铅笔将答题卡上对应选项的方框涂满、涂黑;如需改动,请用橡皮擦干净后,再选涂其他答案.作答非选择题,必须用05毫米黑色墨水的签字笔在答题卡上的指定位置作答,在其他位置作答一律无效.5.如需作图,须用2B铅笔绘、写清楚,线条、符号等须加黑、加粗.一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知椭圆:的右焦点为,过点的直线交椭圆于,两点,若的中点坐标为,则椭圆的方程为()A. B. C. D.2.在中,,,分别是内角,,所对的边,若,则的形状为()A.等腰三角形 B.直角三角形C.钝角三角形 D.锐角三角形3.在等差数列中,如果,且,那么必有,类比该结论,在等比数列中,如果,且,那么必有()A. B.C. D.4.给定下列两种说法:①已知,命题“若,则”的否命题是“若,则”,②“,使”的否定是“,使”,则()A.①正确②错误 B.①错误②正确 C.①和②都错误 D.①和②都正确5.下面是利用数学归纳法证明不等式(,且的部分过程:“……,假设当时,++…+,故当时,有,因为,故++…+,……”,则横线处应该填()A.++…++<,B.++…+,C.2++…++,D.2++…+,6.同时具有性质“①最小正周期是”②图象关于对称;③在上是增函数的一个函数可以是()A. B.C. D.7.已知为实数,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.某运动队有男运动员4名,女运动员3名,若选派2人外出参加比赛,且至少有1名女运动员入选,则不同的选法共有()A.6种 B.12种 C.15种 D.21种9.用反证法证明命题“若,则方程至少有一个实根”时,应假设()A.方程没有实根B.方程至多有一个实根C.方程至多有两个实根D.方程恰好有两个实根10.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为,现用分层抽样的方法抽出容量为的样本,其中甲种产品有18件,则样本容量().A.70 B.90 C.40 D.6011.从图示中的长方形区域内任取一点,则点取自图中阴影部分的概率为()A. B.C. D.12.曲线在点处的切线的倾斜角为()A.30° B.60° C.45° D.120°二、填空题:本题共4小题,每小题5分,共20分。13.已知定义在上的函数的图象关于点对称,,若函数图象与函数图象的交点为,则_____.14.已知函数f(x)=12x-14sinx-3415.若为正实数,则的最大值为_______.16.若的展开式中各项系数的和为,则该展开式中的常数项为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)2018年6月14日,国际足联世界杯足球赛在俄罗斯举行了第21届赛事.虽然中国队一如既往地成为了看客,但中国球迷和参赛的32支队伍所在国球迷一样,对本届球赛热情似火,在6月14日开幕式的第二天,我校足球社团从全校学生中随机抽取了120名学生,对是否收看开幕式情况进行了问卷调查,统计数据如下:收看没收看男生6020女生2020(1)根据上表说明,能否有99%的把握认为,是否收看开幕式与性别有关?(2)现从参与问卷调查且收看了开幕式的学生中,采用按性别分层抽样的方法,选取12人参加志愿者宣传活动.(i)问男、女学生各选取了多少人?(ⅱ)若从这12人中随机选取3人到校广播站开展足球项目的宣传介绍,设选取的3人中女生人数为X,写出X的分布列,并求.附:,其中.0.100.050.0250.010.0052.7063.8415.0246.6357.87918.(12分)的内角所对的边分别是,已知.(1)求;(2)若的面积为,,,求,.19.(12分)已知椭圆的离心率为,点为椭圆上一点.(1)求椭圆C的方程;(2)已知两条互相垂直的直线,经过椭圆的右焦点,与椭圆交于四点,求四边形面积的的取值范围.20.(12分)已知三棱柱的侧棱垂直于底面,,,,,分别是,的中点.(Ⅰ)证明:平面;(Ⅱ)求二面角的余弦值.21.(12分)某种产品的广告费用支出与销售额之间有如下的对应数据:(1)画出散点图,并说明销售额与广告费用支出之间是正相关还是负相关?(2)请根据上表提供的数据,求回归直线方程;(3)据此估计广告费用为10时,销售收入的值.(参考公式:,)22.(10分)某超市为了解气温对某产品销售量的影响,随机记录了该超市12月份中天的日销售量(单位:千克)与该地当日最低气温(单位:)的数据,如下表所示:求关于的线性回归方程;(精确到)判断与之间是正相关还是负相关;若该地12月份某天的最低气温为,请用中的回归方程预测该超市当日的销售量.参考公式:,参考数据:,

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】

设,,,,代入椭圆方程得,利用“点差法”可得.利用中点坐标公式可得,,利用斜率计算公式可得.于是得到,化为,再利用,即可解得,.进而得到椭圆的方程.【题目详解】解:设,,,,代入椭圆方程得,相减得,.,,.,化为,又,解得,.椭圆的方程为.故选:.【题目点拨】熟练掌握“点差法”和中点坐标公式、斜率的计算公式是解题的关键.2、B【解题分析】

利用正弦定理和两角和的正弦化简可得,从而得到即.【题目详解】因为,所以,所以即,因为,故,故,所以,为直角三角形,故选B.【题目点拨】在解三角形中,如果题设条件是边角的混合关系,那么我们可以利用正弦定理或余弦定理把这种混合关系式转化为边的关系式或角的关系式.3、D【解题分析】分析:结合等差数列与等比数列具有的类比性,且等差数列与和差有关,等比数列与积商有关的特点,即可类比得到结论.详解:由题意,类比上述性质:在等比数列中,则由“如果,且”,则必有“”成立,故选D.点睛:本题主要考查了等差数列与等比数列之间的类比推理,其中类比推理的一般步骤:①找出等差数列与等比数列之间的相似性或一致性;②用等差数列的性质取推测等比数列的性质,得到一个明确的结论(或猜想).4、D【解题分析】

根据否命题和命题的否定形式,即可判定①②真假.【题目详解】①中,同时否定原命题的条件和结论,所得命题就是它的否命题,故①正确;②中,特称命题的否定是全称命题,所以②正确,综上知,①和②都正确.故选:D【题目点拨】本题考查四种命题的形式以及命题的否定,注意命题否定量词之间的转换,属于基础题.5、A【解题分析】

由归纳假设,推得的结论,结合放缩法,便可以得出结论.【题目详解】假设当时,++…+,故当时,++…++<,因为,++…+,故选A.【题目点拨】本题主要考查数学归纳法的步骤,以及放缩法的运用,意在考查学生的逻辑推理能力.6、B【解题分析】

利用所给条件逐条验证,最小正周期是得出,把②③分别代入选项验证可得.【题目详解】把代入A选项可得,符合;把代入B选项可得,符合;把代入C选项可得,不符合,排除C;把代入D选项可得,不符合,排除D;当时,,此时为减函数;当时,,此时为增函数;故选B.【题目点拨】本题主要考查三角函数的图象和性质,侧重考查直观想象的核心素养.7、B【解题分析】分析:由,则成立,反之:如,即可判断关系.详解:由,则成立,反之:如,则不成立,所以“”是“”的必要不充分条件,故选B.点睛:本题主要考查了不等式的性质及必要不充分条件的判定,着重考查了推理与运算能力,属于基础题.8、C【解题分析】

先求出所有的方法数,再求出没有女生入选的方法数,相减可得至少有1位女生入选的方法数.【题目详解】解:从3位女生,4位男生中选2人参加比赛,所有的方法有种,

其中没有女生入选的方法有种,

故至少有1位女生入选的方法有21−6=15种.

故选:C.【题目点拨】本题主要考查排列组合的简单应用,属于中档题.9、A【解题分析】分析:直接利用命题的否定写出假设即可,至少的反面是一个都没有。详解:用反证法证明命题“若,则方程至少有一个实根”时,要做的假设是方程没有实根.故选:A.点晴:本题主要考察反证法,注意反证法证明问题时,反设实际是命题的否定10、B【解题分析】

用除以甲的频率,由此求得样本容量.【题目详解】甲的频率为,故,故选B.【题目点拨】本小题主要考查分层抽样的知识,考查频率与样本容量的计算,属于基础题.11、C【解题分析】

先利用定积分公式计算出阴影部分区域的面积,并计算出长方形区域的面积,然后利用几何概型的概率计算公式可得出答案.【题目详解】图中阴影部分的面积为,长方形区域的面积为1×3=3,因此,点M取自图中阴影部分的概率为.故选C.【题目点拨】本题考查定积分的几何意义,关键是找出被积函数与被积区间,属于基础题.12、C【解题分析】

求导得:在点处的切线斜率即为导数值1.所以倾斜角为45°.故选C.二、填空题:本题共4小题,每小题5分,共20分。13、4038.【解题分析】

由函数图象的对称性得:函数图象与函数图象的交点关于点对称,则,,即,得解.【题目详解】由知:得函数的图象关于点对称又函数的图象关于点对称则函数图象与函数图象的交点关于点对称则故,即本题正确结果:【题目点拨】本题考查利用函数图象的对称性来求值的问题,关键是能够根据函数解析式判断出函数的对称中心,属中档题.14、-【解题分析】解:函数f(x)=12因此f'(x0)=12-15、【解题分析】

设恒成立,可知;将不等式整理为,从而可得,解不等式求得的取值范围,从而得到所求的最大值.【题目详解】设恒成立,可知则:恒成立即:恒成立,解得:的最大值为:本题正确结果:【题目点拨】本题考查最值的求解问题,关键是能够将所求式子转化为不等式恒成立的问题,从而构造出不等式求解出的取值范围,从而求得所求最值,属于较难题.16、120【解题分析】分析:的展开式中各项系数的和为,令,求出a,再求出展开式中x的一次项及项即可.详解:的展开式中,各项系数的和为,令,,,的展开式中的系数为,的系数为,展开式中的常数项为.故答案为:120.点睛:求二项展开式中的特定项,一般是利用通项公式进行,化简通项公式后,令字母的指数符合要求(求常数项时,指数为零;求有理项时,指数为整数等),解出项数k+1,代回通项公式即可.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)有(2)(i)男生有9人,女生有3人.(ⅱ)见解析,【解题分析】

(1)套用公式,算出的值与6.635比较大小,即可得到本题答案;(2)(i)由男女的比例为3:1,即可得到本题答案;(ii)根据超几何分布以及离散型随机变量的均值公式,即可得到本题答案.【题目详解】(1)因为,所以有99%的把握认为,是否收看开幕式与性别有关.(2)(ⅰ)根据分层抽样方法得,男生人,女生人,所以选取的12人中,男生有9人,女生有3人.(ⅱ)由题意可知,X的可能取值有0,1,2,3.,,,X0123P∴.【题目点拨】本题主要考查分层抽样,独立性检验的应用和超几何分布以及其分布列均值的求法,考查学生的运算求解能力.18、(1)(2)【解题分析】试题分析:(1)由正弦定理得;(2)由,再由余弦订立的得.试题解析:(1)由已知结合正弦定理得所以即,亦即因为,所以.(2)由,,得,即,又,得所以,又,∴19、(1);(2)【解题分析】

(1)由题意可得,解得进而得到椭圆的方程;(2)设出直线l1,l2的方程,直线和椭圆方程联立,运用韦达定理和弦长公式,分别求得|AB|,|MN|,再由四边形的面积公式,化简整理计算即可得到取值范围.【题目详解】(1)由题意可得,解得a2=4,b2=3,c2=1故椭圆C的方程为;(2)当直线l1的方程为x=1时,此时直线l2与x轴重合,此时|AB|=3,|MN|=4,∴四边形AMBN面积为S|AB|•|MN|=1.设过点F(1,0)作两条互相垂直的直线l1:x=ky+1,直线l2:xy+1,由x=ky+1和椭圆1,可得(3k2+4)y2+1ky﹣9=0,判别式显然大于0,y1+y2,y1y2,则|AB|••,把上式中的k换为,可得|MN|则有四边形AMBN面积为S|AB|•|MN|••,令1+k2=t,则3+4k2=4t﹣1,3k2+4=3t+1,则S,∴t>1,∴01,∴y=﹣()2,在(0,)上单调递增,在(,1)上单调递减,∴y∈(12,],∴S∈[,1)故四边形PMQN面积的取值范围是【题目点拨】本题考查直线和椭圆的位置关系,同时考查直线椭圆截得弦长的问题,以及韦达定理是解题的关键,属于难题.20、(1)见解析;(2).【解题分析】分析:解法一:依题意可知两两垂直,以点为原点建立空间直角坐标系,(1)利用直线的方向向量和平面的法向量垂直,即可证得线面平面;(2)求出两个平面的法向量,利用两个向量的夹角公式,即可求解二面角的余弦值.解法二:利用空间几何体的点线面位置关系的判定定理和二面角的定义求解:(1)设的中点为,连接,证明四边形为平行四边形,得出线线平行,利用线面平行的判定定理即可证得线面平面;(2)以及二面角的平面角,在直角三角形中求出其平面角的余弦值,即可得到二面角的余弦值.详解:解法一:依条件可知、、两两垂直,如图,以点为原点建立空间直角坐标系.根据条件容易求出如下各点坐标:,,,,,,,.(Ⅰ)证明:∵,,是平面的一个法向量,且,所以.又∵平面,∴平面;(Ⅱ)设是平面的法向量,因为,,由,得.解得平面的一个法向量,由已知,平面的一个法向量为,,∴二面角的余弦值是.解法二:(Ⅰ)证明:设的中点为,连接,,∵,分别是,的中点,∴,又∵,,∴,∴四边形是平行四边形,∴,∵平面,平面,∴平面;(Ⅱ)如图,设的中点为,连接,∴,∵底面,∵,,∴,,∴,∴底面,在平面内,过点做,垂足为,连接,,,,∴平面,则,

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论