云南省会曲靖市会泽县第一中学2024届数学高二第二学期期末调研试题含解析_第1页
云南省会曲靖市会泽县第一中学2024届数学高二第二学期期末调研试题含解析_第2页
云南省会曲靖市会泽县第一中学2024届数学高二第二学期期末调研试题含解析_第3页
云南省会曲靖市会泽县第一中学2024届数学高二第二学期期末调研试题含解析_第4页
云南省会曲靖市会泽县第一中学2024届数学高二第二学期期末调研试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省会曲靖市会泽县第一中学2024届数学高二第二学期期末调研试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设某大学的女生体重y(单位:kg)与身高x(单位:cm)具有线性相关关系,根据一组样本数据(xi,yi)(i=1,2,…,n),用最小二乘法建立的回归方程为=0.85x-85.71,则下列结论中不正确的是A.y与x具有正的线性相关关系B.回归直线过样本点的中心(,)C.若该大学某女生身高增加1cm,则其体重约增加0.85kgD.若该大学某女生身高为170cm,则可断定其体重必为58.79kg2.的二项式系数之和为().A. B. C. D.3.在二项式的展开式中,的系数为()A.﹣80 B.﹣40 C.40 D.804.某公司的班车在7:30,8:00,8:30发车,小明在7:50至8:30之间到达发车站乘坐班车,且到达发车站的时刻是随机的,则他等车时间不超过10分钟的概率是A. B. C. D.5.若函数在区间内单调递增,则a的取值范围是A. B. C. D.6.复数满足,则()A. B. C. D.7.给出下列四个命题:①若,则;②若,且,则;③若复数满足,则;④若,则在复平面内对应的点位于第一象限.其中正确的命题个数为()A. B. C. D.8.的展开式中第5项的二项式系数是()A. B. C. D.9.在平面直角坐标系中,由坐标轴和曲线所围成的图形的面积为()A. B. C. D.10.函数在区间上是增函数,则实数的取值范围是()A. B. C. D.11.正切函数是奇函数,是正切函数,因此是奇函数,以上推理()A.结论正确 B.大前提不正确 C.小前提不正确 D.以上均不正确12.已知,分别是椭圆C:的上下两个焦点,若椭圆上存在四个不同点P,使得的面积为,则椭圆C的离心率e的取值范围是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.在中,是角A,B,C的对边,己知,现有以下判断:①的外接圆面积是;②;③可能等于16;④作A关于BC的对称点,则的最大值是.请将所有正确的判断序号填在横线上________.14.设随机变量服从正态分布,如果,则________.15.记为虚数集,设,则下列类比所得的结论正确的是__________.①由,类比得②由,类比得③由,类比得④由,类比得16.若随机变量,且,则__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(且).(Ⅰ)当时,求函数的单调区间.(Ⅱ)当时,,求的取值范围.18.(12分)如图,在四棱锥中,底面是矩形,平面平面,,点在棱上,,点是棱的中点,求证:(1)平面;(2)平面.19.(12分)若不等式的解集是,求不等式的解集.20.(12分)某学校高三年级有学生1000名,经调查研究,其中750名同学经常参加体育锻炼(称为类同学),另外250名同学不经常参加体育锻炼(称为类同学),现用分层抽样方法(按类、类分二层)从该年级的学生中共抽查100名同学.(1)测得该年级所抽查的100名同学身高(单位:厘米)频率分布直方图如图,按照统计学原理,根据频率分布直方图计算这100名学生身高数据的平均数和中位数(单位精确到0.01);(2)如果以身高达到作为达标的标准,对抽取的100名学生,得到列联表:体育锻炼与身高达标列联表身高达标身高不达标合计积极参加体育锻炼60不积极参加体育锻炼10合计100①完成上表;②请问有多大的把握认为体育锻炼与身高达标有关系?参考公式:.参考数据:0.400.250.150.100.050.0250.0100.0050.0010.7081.3232.0722.7063.8415.0246.6357.87910.82821.(12分)如图,直角梯形中,,,,,底面,底面且有.(1)求证:;(2)若线段的中点为,求直线与平面所成角的正弦值.22.(10分)已知点A是椭圆的上顶点,斜率为的直线交椭圆E于A、M两点,点N在椭圆E上,且;(1)当时,求的面积;(2)当时,求证:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】根据y与x的线性回归方程为y=0.85x﹣85.71,则=0.85>0,y与x具有正的线性相关关系,A正确;回归直线过样本点的中心(),B正确;该大学某女生身高增加1cm,预测其体重约增加0.85kg,C正确;该大学某女生身高为170cm,预测其体重约为0.85×170﹣85.71=58.79kg,D错误.故选D.2、B【解题分析】由题意得二项式系数和为.选.3、A【解题分析】

根据二项展开式的通项,可得,令,即可求得的系数,得到答案.【题目详解】由题意,二项式的展开式的通项为,令,可得,即展开式中的系数为,故选A.【题目点拨】本题主要考查了二项式定理的应用,其中解答中熟记二项展开式的通项是解答本题的关键,着重考查了推理与运算能力,属于基础题.4、B【解题分析】试题分析:由题意,这是几何概型问题,班车每30分钟发出一辆,到达发车站的时间总长度为40,等车不超过10分钟的时间长度为20,故所求概率为,选B.【考点】几何概型【名师点睛】这是全国卷首次考查几何概型,求解几何概型问题的关键是确定“测度”,常见的测度有长度、面积、体积等.5、B【解题分析】

设,得,且:,时,函数递减,或时,递增.结合复合函数的单调性:当a>1时,减区间为,不合题意,当0<a<1时,为增区间.∴,解得:.故选:B.【题目点拨】复合函数的单调性:对于复合函数y=f[g(x)],若t=g(x)在区间(a,b)上是单调函数,且y=f(t)在区间(g(a),g(b))或者(g(b),g(a))上是单调函数,若t=g(x)与y=f(t)的单调性相同(同时为增或减),则y=f[g(x)]为增函数;若t=g(x)与y=f(t)的单调性相反,则y=f[g(x)]为减函数.简称:同增异减.6、C【解题分析】

利用复数的四则运算可得,再利用复数的除法与减法法则可求出复数.【题目详解】,,故选C.【题目点拨】本题考查复数的四则运算,考查复数的求解,考查计算能力,属于基础题.7、B【解题分析】

根据复数的乘方运算,结合特殊值即可判断①;由复数性质,不能比较大小可判断②;根据复数的除法运算及模的求法,可判断③;由复数的乘法运算及复数的几何意义可判断④.【题目详解】对于①,若,则错误,如当时,所以①错误;对于②,虚数不能比较大小,所以②错误;对于③,复数满足,即,所以,即③正确;对于④,若,则,所以,在复平面内对应点的坐标为,所以④正确;综上可知,正确的为③④,故选:B.【题目点拨】本题考查了复数的几何意义与运算的综合应用,属于基础题.8、D【解题分析】试题分析:由二项展开式的通项公式得,第5项的二项式系数为.考点:二项式定理.9、C【解题分析】

根据余弦函数图象的对称性可得,求出积分值即可得结果.【题目详解】根据余弦函数图象的对称性可得,故选C.【题目点拨】本题主要考查定积分的求法,考查数学转化思想方法,属于基础题.10、D【解题分析】

求出函数的导数,由题意可得恒成立,转化求解函数的最值即可.【题目详解】由函数,得,故据题意可得问题等价于时,恒成立,即恒成立,函数单调递减,故而,故选D.【题目点拨】本题主要考查函数的导数的应用,函数的单调性以及不等式的解法,函数恒成立的等价转化,属于中档题.11、C【解题分析】

根据三段论的要求:找出大前提,小前提,结论,再判断正误即可。【题目详解】大前提:正切函数是奇函数,正确;小前提:是正切函数,因为该函数为复合函数,故错误;结论:是奇函数,该函数为偶函数,故错误;结合三段论可得小前提不正确.故答案选C【题目点拨】本题考查简易逻辑,考查三段论,属于基础题。12、A【解题分析】

求出椭圆的焦距,求出椭圆的短半轴的长,利用已知条件列出不等式求出的范围,然后求解离心率的范围.【题目详解】解:,分别是椭圆的上下两个焦点,可得,短半轴的长:,椭圆上存在四个不同点,使得△的面积为,可得,可得,解得,则椭圆的离心率为:.故选:.【题目点拨】本题考查椭圆的简单性质的应用,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、①②④【解题分析】

根据题目可知,利用正弦定理与三角恒等变换逐个分析即可判断每个命题的真假.【题目详解】①设的外接圆半径为,根据正弦定理,可得,所以的外接圆面积是,故①正确.②根据正弦定理,利用边化角的方法,结合,可将原式化为,故②正确.③,故③错误.④设到直线的距离为,根据面积公式可得,即,再根据①中的结论,可得,故④正确.综上,答案为①②④.【题目点拨】本题是考查三角恒等变换与解三角形结合的综合题,解题时应熟练掌握运用三角函数的性质、诱导公式以及正余弦定理、面积公式等.14、【解题分析】

根据随机变量符合正态分布和正态分布的曲线关于对称,得到一对对称区间的概率之间的关系,即可求得结果【题目详解】随机变量服从正态分布曲线关于直线对称故答案为【题目点拨】本题主要考查的知识点是正态分布,解题的关键是正态分布和正态分布的曲线关于对称,属于基础题。15、③【解题分析】分析:在数集的扩展过程中,有些性质是可以传递的,但有些性质不能传递,因此,要判断类比的结果是否正确,关键是要在新的数集里进行论证,当然要想证明一个结论是错误的,也可直接举一个反例,要想得到本题的正确答案,可对3个结论逐一进行分析,不难解答.详解:A:由a•b∈R,不能类比得x•y∈I,如x=y=i,则xy=﹣1∉I,故①不正确;B:由a2≥1,不能类比得x2≥1.如x=i,则x2<1,故②不正确;C:由(a+b)2=a2+2ab+b2,可类比得(x+y)2=x2+2xy+y2.故③正确;D:若x,y∈I,当x=1+i,y=﹣i时,x+y>1,但x,y是两个虚数,不能比较大小.故④错误故4个结论中,C是正确的.故答案为:③.点睛:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).但类比推理的结论不一定正确,还需要经过证明.16、【解题分析】

由条件求得,可得正态分布曲线的图象关于直线对称.求得的值,根据对称性,即可求得答案.【题目详解】随机变量,且,可得,正态分布曲线的图象关于直线对称.,故答案为:.【题目点拨】本题考查了正态分布曲线的特点及曲线所表示的意义,考查了分析能力和计算能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)单调减区间为,单调增区间为(Ⅱ)k<0或k【解题分析】

(Ⅰ)求得函数的导数,根据导数的符号,即可求得函数的单调区间;(Ⅱ)当时,,当时,上不等式成立;当时,不等式等价于,设,进而令,利用导数求得函数的单调区间和最值,从而可求得的取值范围.【题目详解】(Ⅰ)由题意,函数f(x),则,当时,,当时,,所以函数的单调减区间为,单调增区间为.(Ⅱ)时,,①当时,上不等式成立,满足题设条件;②当时,,等价于,设,则,设,则,∴在[1,+∞)上单调递减,得,①当,即时,得,∴在上单调递减,得,满足题设条件;②当,即时,,而,∴,又单调递减,∴当,得,∴在上单调递增,得,不满足题设条件.综上所述,或.【题目点拨】本题主要考查导数在函数中的综合应用,以及恒成立问题的求解,着重考查了转化与化归思想、逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.18、(1)见解析;(2)见解析.【解题分析】分析:(1),所以点是棱的中点,所以,所以,所以平面.(2)先证明平面所以,又因为,所以平面.详解:证明:(1)因为在中,,所以点是棱的中点.又点是棱的中点,所以是的中位线,所以.因为底面是矩形,以,所以.又平面,平面,所以平面.(2)因为平面平面,平面,平面平面,所以平面.又平面,所以.因为,,,平面,平面,所以平面.点睛:线面垂直的判定和性质定理的应用是高考一直以来的一个热点,把握该知识点的关键在于判定定理和性质定理要熟练掌握理解,见到面面垂直一般都要想到其性质定理,这是解题的关键.19、【解题分析】

由不等式的解集和方程的关系,可知,是方程的两根,利用韦达定理求出,再代入不等式,解一元二次不等式即可.【题目详解】解:由已知条件可知,且方程的两根为,;由根与系数的关系得解得.所以原不等式化为解得所以不等式解集为【题目点拨】本题主要考查一元二次不等式的解法,还考查一元二次不等式解集与一元二次方程的关系以及利用韦达定理求值.20、(1)174,174.55;(2)①列联表见解析;②.【解题分析】

(1)根据频率分布直方图的平均数与中位数的公式即可求解;(2)①根据频率分布直方图求出身高达标与不达标的比例,结合积极参加体育锻炼和不积极参加体育锻炼的比例,完成表格;②根据公式计算出即可下结论.【题目详解】(1)平均数,前两组频率之和为0.25,前三组频率之和为0.8,所以中位数在第三组中位数为.(2)根据频率分布直方图可得身高不达标所占频率为0.25,达标所占频率为0.75,所以身高不达标25人,达标75人,根据分层抽样抽取的积极参加体育锻炼75人,不积极参加体育锻炼的25人,所以表格为:身高达标身高不达标合计积极参加体育锻炼601575不积极参加体育锻炼151025合计7525100假设体育锻炼与身高达标没有关系.所以有把握认为体育锻炼与身高达标有关系.【题目点拨】此题考查根据频率分布直方图求平均数和中位数,计算指定组的频率,完成列联表进行独立性检验,关键在于数量掌握相关数据的求解方法,准确计算并下结论.21、(1)证

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论