![2024届河南省商丘名校数学高二第二学期期末监测模拟试题含解析_第1页](http://file4.renrendoc.com/view11/M03/03/19/wKhkGWW75o2AIaMTAAIVzEycKa8418.jpg)
![2024届河南省商丘名校数学高二第二学期期末监测模拟试题含解析_第2页](http://file4.renrendoc.com/view11/M03/03/19/wKhkGWW75o2AIaMTAAIVzEycKa84182.jpg)
![2024届河南省商丘名校数学高二第二学期期末监测模拟试题含解析_第3页](http://file4.renrendoc.com/view11/M03/03/19/wKhkGWW75o2AIaMTAAIVzEycKa84183.jpg)
![2024届河南省商丘名校数学高二第二学期期末监测模拟试题含解析_第4页](http://file4.renrendoc.com/view11/M03/03/19/wKhkGWW75o2AIaMTAAIVzEycKa84184.jpg)
![2024届河南省商丘名校数学高二第二学期期末监测模拟试题含解析_第5页](http://file4.renrendoc.com/view11/M03/03/19/wKhkGWW75o2AIaMTAAIVzEycKa84185.jpg)
版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届河南省商丘名校数学高二第二学期期末监测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.命题,则()A.是真命题,,B.是假命题,,C.是真命题,,D.是假命题,,2.设,则使得的的取值范围是()A. B. C. D.3.通过随机询问110名性别不同的大学生是否爱好体育,得到如下的列联表:由公式算得:K2=≈7.8.附表:参照附表,得到的正确结论是()A.有99%以上的把握认为“爱好体育运动与性别有关”B.有99%以上的把握认为“爱好体育运动与性别无关”C.在犯错误的概率不超过0.1%的前提下,认为“爱好体育运动与性别有关”D.在犯错误的概率不超过0.1%的前提下,认为“爱好体育运动与性别无关”4.若满足约束条件则的最大值为()A.5 B. C.4 D.35.已知双曲线的一条渐近线与直线垂直,则双曲线的离心率为()A. B. C. D.6.已知点在椭圆上,、分别是椭圆的左、右焦点,的中点在轴上,则等于()A. B. C. D.7.函数y的图象大致为()A. B.C. D.8.函数的最大值为()A. B.1 C.4033 D.9.下列有关结论正确的个数为()①小赵、小钱、小孙、小李到4个景点旅游,每人只去一个景点,设事件“4个人去的景点不相同”,事件“小赵独自去一个景点”,则;②设,则“”是“的充分不必要条件;③设随机变量服从正态分布,若,则与的值分别为.A.0 B.1 C.2 D.310.在中,角的对边分别是,若,则()A.5 B. C.4 D.311.若X是离散型随机变量,P(X=x1)=23,P(X=x2)=1A.53 B.73 C.312.设,命题“若,则方程有实根”的逆否命题是A.若方程有实根,则 B.若方程有实根,则C.若方程没有实根,则 D.若方程没有实根,则二、填空题:本题共4小题,每小题5分,共20分。13.在区间上随机地取一个实数,若实数满足的概率为,则_______.14.一个袋中有形状、大小完全相同的个小球,其中个红球,其余为白球.从中一次性任取个小球,将“恰好含有个红球”的概率记为,则当__________时,取得最大值.15.若实数x,y满足x+y-2≥0x≤4y≤5则z=y-x的最小值为16.已知直线经过点,且点到的距离等于,则直线的方程为____三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)近年来,空气质量成为人们越来越关注的话题,空气质量指数(,简称)是定量描述空气质量状况的指数.环保部门记录了某地区7天的空气质量指数,其中,有4天空气质量为优,有2天空气质量为良,有1天空气质量为轻度污染.现工作人员从这7天中随机抽取3天进行某项研究.(I)求抽取的3天中至少有一天空气质量为良的概率;(Ⅱ)用表示抽取的3天中空气质量为优的天数,求随机变量的分布列和数学期望.18.(12分)已知函数的最小值为.(1)若,求证:;(2)若,,求的最小值.19.(12分)已知都是实数,,.(Ⅰ)若,求实数的取值范围;(Ⅱ)若对满足条件的所有都成立,求实数的取值范围.20.(12分)从某公司生产线生产的某种产品中抽取1000件,测量这些产品的一项质量指标,由检测结果得如图所示的频率分布直方图:(1)求这1000件产品质量指标的样本平均数和样本方差(同一组中的数据用该组区间的中点值作代表);(2)由直方图可以认为,这种产品的质量指标值服从正态分布,其中近似为样本平均数近似为样本方差.(i)利用该正态分布,求;(ⅱ)已知每件该产品的生产成本为10元,每件合格品(质量指标值)的定价为16元;若为次品(质量指标值),除了全额退款外且每件次品还须赔付客户48元.若该公司卖出100件这种产品,记表示这件产品的利润,求.附:,若,则.21.(12分)在的展开式中,求:(1)第3项的二项式系数及系数;(2)含的项.22.(10分)已知函数.(1)讨论的导函数零点的个数;(2)若函数存在最小值,证明:的最小值不大于1.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:根据命题真假的判断和含有量词的命题的否定,即可得到结论.详解:,恒成立是真命题,,故选C.点睛:本题考查命题真假的判断,含有量词的命题的否定关系的应用.2、B【解题分析】分析:根据题意,由函数f(x)的解析式分析可得函数f(x)的图象关于直线x=1对称,当x≥1时,对函数f(x)求导分析可得函数f(x)在[1,+∞)上为减函数,则原不等式变形可得f(|x|)<f(|2x﹣3|),结合单调性可得|x|>|2x﹣3|,解可得x的取值范围,即可得答案.详解:根据题意,f(x)=﹣x2+2x﹣2(ex﹣1+e1﹣x)=﹣(x﹣1)2﹣2(ex﹣1+)+1,分析可得:y=﹣(x﹣1)2+1与函数y=2(ex﹣1+e1﹣x)都关于直线x=1对称,则函数f(x)=﹣x2+2x﹣2(ex﹣1+e1﹣x)的图象关于直线x=1对称,f(x)=﹣x2+2x﹣2(ex﹣1+e1﹣x),当x≥1时,f′(x)=﹣2x+2﹣(ex﹣1﹣)=﹣2(x+1+ex﹣1﹣),又由x≥1,则有ex﹣1≥,即ex﹣1﹣≥0,则有f′(x)<0,即函数f(x)在[1,+∞)上为减函数,f(x+1)<f(2x﹣2)⇒f(|x+1﹣1|)<f(|2x﹣2﹣1|)⇒f(|x|)<f(|2x﹣3|)⇒|x|>|2x﹣3|,变形可得:x2﹣4x+3<0,解可得1<x<3,即不等式的解集为(1,3);故选:B.点睛:处理抽象不等式问题,一般先利用函数的奇偶性得出区间上的单调性,再利用其单调性脱去函数的符号“f”,转化为考查函数的单调性的问题或解不等式(组)的问题,若为偶函数,则,若函数是奇函数,则.3、A【解题分析】
,则有99%以上的把握认为“爱好体育运动与性别有关”.本题选择A选项.点睛:独立性检验得出的结论是带有概率性质的,只能说结论成立的概率有多大,而不能完全肯定一个结论,因此才出现了临界值表,在分析问题时一定要注意这点,不可对某个问题下确定性结论,否则就可能对统计计算的结果作出错误的解释.4、A【解题分析】
由约束条件作出可行域,化目标函数为直线方程的斜截式,数形结合得到最优解,联立方程组求得最优解的坐标,代入目标函数得答案.【题目详解】由约束条件作出可行域如图,
联立,可得,
化目标函数为,
由图可知,当直线过A时,直线在y轴上的截距最大,z有最大值为.
故选:A.【题目点拨】本题考查简单的线性规划,考查数形结合的解题思想方法,是中档题.5、C【解题分析】
求出双曲线的渐近线方程,再由两直线垂直的条件,可得,b=2a,再由a,b,c的关系和离心率公式,即可得到所求.【题目详解】双曲线的渐近线方程为,直线的斜率为,由题意有,所以,,故离心率.故选:C.【题目点拨】本题考查双曲线的方程和性质,考查渐近线方程和离心率的求法,考查运算能力,属于基础题.6、A【解题分析】由题意可得,设P,且,所以=,选A.【题目点拨】若,是椭圆的左、右焦点,且,则点P的坐标为.7、B【解题分析】
通过函数的单调性和特殊点的函数值,排除法得到正确答案.【题目详解】因为,其定义域为所以,所以为奇函数,其图像关于原点对称,故排除A、C项,当时,,所以D项错误,故答案为B项.【题目点拨】本题考查利用函数的奇偶性和特殊点的函数值来判断函数的图像,属于简单题.8、C【解题分析】,选C.9、D【解题分析】对于①,,所以,故①正确;对于②,当,有,而由有,因为,所以是的充分不必要条件,故②正确;对于③,由已知,正态密度曲线的图象关于直线对称,且所以,故③正确.点睛:本题主要考查了条件概率,充分必要条件,正态分布等,属于难题.这几个知识点都是属于难点,容易做错.10、D【解题分析】
已知两边及夹角,可利用余弦定理求出.【题目详解】由余弦定理可得:,解得.故选D.【题目点拨】本题主要考查利用正余弦定理解三角形,注意根据条件选用合适的定理解决.11、C【解题分析】
本题考查期望与方差的公式,利用期望及方差的公式,建立方程,即可求得结论.【题目详解】∵E(X)=∴2∴x1=1x∴x故选C.考点:离散型随机变量的期望方差.12、D【解题分析】
根据已知中的原命题,结合逆否命题的定义,可得答案.【题目详解】命题“若,则方程有实根”的逆否命题是命题“若方程没有实根,则”,故选:D.【题目点拨】本题考查的知识点是四种命题,难度不大,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、2【解题分析】
画出数轴,利用满足的概率,可以求出的值即可.【题目详解】如图所示,区间的长度是6,在区间上随机地取一个数,若满足的概率为,则有,解得,故答案是:2.【题目点拨】该题考查的是有关长度型几何概型的问题,涉及到的知识点有长度型几何概型的概率公式,属于简单题目.14、20【解题分析】分析:由题意可知,满足超几何分布,列出的公式,建立与的表达式,求最大值。详解:,取得最大值,也即是取最大,所以:解得,故。点睛:组合数的最大值,可以理解为数列的最大项来处理。15、-6【解题分析】略视频16、或【解题分析】
当直线的斜率不存在时,直线的方程为,不成立;当直线的斜率存在时,直线的方程为,由点到的距离等于,解得或,由此能求出直线的方程。【题目详解】直线经过点,当直线的斜率不存在时,直线的方程为,点到的距离等于,不成立;当直线的斜率存在时,直线的方程为,即,点到的距离等于,,解得或,直线的方程为或,即或故答案为:或【题目点拨】本题考查点斜式求直线方程以及点到直线的距离公式,在求解时注意讨论斜率存在不存在,属于常规题型。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(I);(Ⅱ).【解题分析】
(Ⅰ)可先计算对立事件“抽取的3天空气质量都不为良”的概率,再利用相关公式即得答案;(Ⅱ)找出随机变量的所有可能取值,分别计算相关概率,从而列出分布列计算数学期望.【题目详解】(Ⅰ)解:设事件为“抽取的3天中至少有一天空气质量为良”,事件的对立事件为“抽取的3天空气质量都不为良”,从7天中随机抽取3天共有种不同的选法,抽取的3天空气质量都不为良共有种不同的选法,则,所以,事件发生的概率为.(Ⅱ)解:随机变量的所有可能取值为0,1,2,3.,所以,随机变量的分布列为0123随机变量的数学期望.【题目点拨】本题主要考查对立事件的相关概念与计算,超几何分布的分布列与数学期望,意在考查学生的分析能力,逻辑推理能力和计算能力.18、(1)见解析;(2)4【解题分析】
试题分析:(1)由绝对值三角不等式得,从而,要证明,只需证明,作差即可得证;(2)由题意,,展开后,利用基本不等式求解即可.试题解析:(1).要证明,只需证明,∵,∵,∴,∴,∴,可得.(2)由题意,,故,当且仅当,时,等号成立.19、(I);(II).【解题分析】试题分析:(1)化简函数的解析式,由得或.求出每个不等式组的解集,再取并集,即得所求;(2)由题可得,由绝对值不等式可得的最小值为2,可得,再根据的解集,求得的解集.试题解析:(1),由得或解得或,故所求实数的取值范围为.(2)由且,得,又∵,∴,∵的解集为,∴的解集为,∴所求实数的取值范围为.点睛:本题主要考查了绝对值不等式的解法,以及转化与化归思想,难度一般;常见的绝对值不等式的解法,法一:利用绝对值不等式的几何意义求解,体现了数形结合的思想;法二:利用“零点分段法”求解,体现了分类讨论的思想;法三:通过构造函数,利用函数的图象求解,体现了函数与方程的思想.20、(1)200,150;(2)(i);(ⅱ)280.【解题分析】
(1)直接利用样本平均数和样本方差公式计算得到答案.(2)(i)先判断,则(ⅱ)Ⅹ表示100件产品的正品数,题意得,计算,再计算【题目详解】(1)由题意得.∴,即样本平均数为200,样本方差为150.(2)(i)由(1)可知,,∴(ⅱ)设Ⅹ表示100件产品的正品数,题意得,∴,∴.【题目点拨】本题考查了数学期望,方差的计算,意在考查学生的计算能力和应用能力.21、(1)第3项的系数为24=240.(2)含x2的项为第2项,且T2=-192x2.【解题分析】试题分析:(1)根据二项展开式的通项,即可求解第项的二项式系数及系数;(2)由二项展开式的痛项,可得当时,即可得到含的系数.试题解析:(1)第3项的二项式系数为C=15,又T3=C(2)42=24·Cx,所以第3项的系数为24C=240.(2)Tk+1=C(2)6-kk=(-1)k26-kCx3-k,令3-k=2,得k=1.所以含x2的项为第2项,且T2=-192x2.22、(1)见解析;(2)证明见解析.【解题分析】
(1)根
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 介绍客户提成合同范本
- 2025年度体育产业贷款代偿与赛事运营合同
- ktv利润分成合同范本
- 2025年度海沙运输市场准入与监管合同
- 书画合作合同范例
- 2025年度互联网广告投放与监测服务合同
- 信息广场转让合同范本
- 军人个人申请书
- 出售家电合同范本
- 义务兵转士官申请书
- 学校小卖部承包合同范文
- 普外腹腔镜手术护理常规
- 2025年湖南铁道职业技术学院高职单招职业技能测试近5年常考版参考题库含答案解析
- 2024年全国职业院校技能大赛(矿井灾害应急救援赛项)考试题库(含答案)
- 《预制高强混凝土风电塔筒生产技术规程》文本附编制说明
- 2025年浙江省温州乐清市融媒体中心招聘4人历年高频重点提升(共500题)附带答案详解
- 2025年煤矿探放水证考试题库
- C语言程序设计 教案
- 农业机械设备运输及调试方案
- 2025新译林版英语七年级下单词表
- 海洋工程设备保温保冷方案
评论
0/150
提交评论