版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
广东省梅县东山中学2024届数学高二下期末复习检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图所示,程序框图(算法流程图)的输出结果是()A.34 B.55 C.78 D.892.已知,取值如下表:从所得的散点图分析可知:与线性相关,且,则等于()A. B. C. D.3.若曲线上任意一点处的切线的倾斜角都是锐角,那么整数等于()A.0 B.1 C. D.4.已知函数f(x)在R上可导,且f(x)=x2A.f(x)=x2C.f(x)=x25.若满足约束条件,则的最小值是()A.0 B. C. D.36.函数的单调递增区间为()A. B.C. D.7.定义:如果一个向量列从第二项起,每一项与它的前一项的差都等于同一个常向量,那么这个向量列做等差向量列,这个常向量叫做等差向量列的公差.已知向量列是以为首项,公差的等差向量列.若向量与非零向量)垂直,则()A. B. C. D.8.如果点位于第三象限,那么角所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限9.已知过点且与曲线相切的直线的条数有().A.0 B.1 C.2 D.310.如图所示是求的程序流程图,其中①应为()A. B. C. D.11.已知双曲线,过原点作一条倾斜角为直线分别交双曲线左、右两支P,Q两点,以线段PQ为直径的圆过右焦点F,则双曲线离心率为A. B. C.2 D.12.若的展开式中含有项的系数为8,则()A.2 B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.除以9的余数为_______;14.对不同的且,函数必过一个定点,则点的坐标是_____.15.在上海高考改革方案中,要求每位高中生必须在物理、化学、生物、政治、历史、地理6门学科(3门理科,3门文科)中选择3门学科参加等级考试,小李同学受理想中的大学专业所限,决定至少选择一门理科学科,那么小李同学的选科方案有________种.16.已知地球的半径约为6371千米,上海的位置约为东经、北纬,开罗的位置约为东经、北纬,两个城市之间的距离为______.(结果精确到1千米)三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知的展开式中,所有项的二项式系数之和为128.(1)求展开式中的有理项;(2)求展开后所有项的系数的绝对值之和.18.(12分)已知函数.(Ⅰ)当时,求的最大值;(Ⅱ)若对恒成立,求实数的取值范围.19.(12分)如图,已知三棱柱的侧棱与底面垂直,,分别是的中点.(1)求异面直线与所成角的余弦值;(2)求二面角的余弦值.20.(12分)已知的展开式中第四项的系数与第二项的系数的比是.(1)求展开式中各项系数的和;(2)求展开式中含的项.21.(12分)“过大年,吃水饺”是我国不少地方过春节的一大习俗.2018年春节前夕,市某质检部门随机抽取了100包某种品牌的速冻水饺,检测其某项质量指标,检测结果如频率分布直方图所示.(1)求所抽取的100包速冻水饺该项质量指标值的样本平均数(同一组中数据用该组区间的中点值作代表);(2)①由直方图可以认为,速冻水饺的该项质量指标值服从正态分布,利用该正态分布,求落在内的概率;②将频率视为概率,若某人从某超市购买了4包这种品牌的速冻水饺,记这4包速冻水饺中这种质量指标值位于内的包数为,求的分布列和数学期望.附:①计算得所抽查的这100包速冻水饺的质量指标的标准差为;②若,则,.22.(10分)为降低养殖户养鸭风险,某保险公司推出了鸭意外死亡保险,该保单合同规定每只幼鸭投保2元,若生长期内鸭意外死亡,则公司每只鸭赔付12元.假设鸭在生长期内的意外死亡率为0.15,且每只鸭是否死亡相互独立.若某养殖户养鸭3000只,都投保该险种.(1)求该保单保险公司赔付金额等于保费时,鸭死亡的只数;(2)求该保单保险公司平均获利多少元.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】试题分析:由题意,①②③④⑤⑥⑦⑧,从而输出,故选B.考点:1.程序框图的应用.2、B【解题分析】
计算平均数,可得样本中心点,代入线性回归方程,即可求得a的值.【题目详解】依题意,得(0+1+4+5+6+8)=4,(1.3+1.8+5.6+6.1++7.4+9.3)=5.25.又直线y=0.95x+a必过中心点(),即点(4,5.25),于是5.25=0.95×4+a,解得a=1.45.故选B.【题目点拨】本题考查线性回归方程,利用线性回归方程恒过样本中心点是关键.3、B【解题分析】
求出原函数的导函数,由导函数大于0恒成立转化为二次不等式对应二次方程的判别式小于0,进一步求解关于的不等式得答案.【题目详解】解:由,得,曲线上任意点处的切线的倾斜角都为锐角,对任意实数恒成立,
.解得:.整数的值为1.故答案为B【题目点拨】本题考查了利用导数研究曲线上某点处的切线方程,函数在某点处的导数值就是对应曲线上该点处的切线的斜率,考查了数学转化思想方法,是中档题.4、A【解题分析】
先对函数f(x)求导,然后将x=1代入导函数中,可求出f'(1)=-2,从而得到f(x)【题目详解】由题意,f'(x)=2x+2f'(1),则f故答案为A.【题目点拨】本题考查了函数解析式的求法,考查了函数的导数的求法,属于基础题.5、B【解题分析】可行域为一个三角形及其内部,其中,所以直线过点时取最小值,选B.6、B【解题分析】
先求出的定义域,再利用同增异减以及二次函数的图像判断单调区间即可.【题目详解】令,得f(x)的定义域为,根据复合函数的单调性规律,即求函数在上的减区间,根据二次函数的图象可知为函数的减区间.故选:B【题目点拨】本题主要考查对数函数的定义域以及复合函数的单调区间等,属于基础题型.7、D【解题分析】
先根据等差数列通项公式得向量,再根据向量垂直得递推关系,最后根据累乘法求结果.【题目详解】由题意得,因为向量与非零向量)垂直,所以因此故选:D【题目点拨】本题考查等差数列通项公式、向量垂直坐标表示以及累乘法,考查综合分析求解能力,属中档题.8、B【解题分析】
由二倍角的正弦公式以及已知条件得出和的符号,由此得出角所在的象限.【题目详解】由于点位于第三象限,则,得,因此,角为第二象限角,故选B.【题目点拨】本题考查角所在象限的判断,解题的关键要结合已知条件判断出角的三角函数值的符号,利用“一全二正弦,三切四余弦”的规律判断出角所在的象限,考查推理能力,属于中等题.9、C【解题分析】
设切点为,则,由于直线经过点,可得切线的斜率,再根据导数的几何意义求出曲线在点处的切线斜率,建立关于的方程,从而可求方程.【题目详解】若直线与曲线切于点,则,又∵,∴,∴,解得,,∴过点与曲线相切的直线方程为或,故选C.【题目点拨】本题主要考查了利用导数求曲线上过某点切线方程的斜率,求解曲线的切线的方程,其中解答中熟记利用导数的几何意义求解切线的方程是解答的关键,着重考查了运算与求解能力,属于基础题.10、C【解题分析】分析:由题意结合流程图的功能确定判断条件即可.详解:由流程图的功能可知当时,判断条件的结果为是,执行循环,当时,判断条件的结果为否,跳出循环,结合选项可知,①应为.本题选择C选项.点睛:本题主要考查流程图的应用,补全流程图的方法等知识,意在考查学生的转化能力和计算求解能力.11、B【解题分析】
求得直线的方程,联立直线的方程和双曲线的方程,求得两点坐标的关系,根据列方程,化简后求得离心率.【题目详解】设,依题意直线的方程为,代入双曲线方程并化简得,故,设焦点坐标为,由于以为直径的圆经过点,故,即,即,即,两边除以得,解得.故,故选B.【题目点拨】本小题主要考查直线和双曲线的交点,考查圆的直径有关的几何性质,考查运算求解能力,属于中档题.12、A【解题分析】展开式中含有项的系数,,故选A.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
将变为,利用二项式定理展开可知余数因不含因数的项而产生,从而可知余数为.【题目详解】由题意得:除以的余数为:本题正确结果:【题目点拨】本题考查余数问题的求解,考查学生对于二项式定理的掌握情况,关键是能够配凑出除数的形式,属于常考题型.14、【解题分析】
根据指数函数的图象恒过定点(0,1),求出函数f(x)必过的定点坐标.【题目详解】根据指数函数的图象恒过定点(0,1),令4﹣2x=0,x=2,∴f(2)=+3=4,∴点A的坐标是(2,4).故答案为(2,4).【题目点拨】本题考查了指数函数恒过定点的应用问题,属于基础题.15、19【解题分析】
6门学科(3门理科,3门文科)中选择3门学科可以分为全为理科,有理科有文科,全为文科,决定至少选择一门理科学科包括前两种,考虑起来比较麻烦,故用间接法:用总数减去全为文科的数量.【题目详解】根据题意,从物理、化学、生物、政治、历史、地理6门学科任选3门,有种选取方法,其中全部为文科科目,没有理科科目的选法有种,所以至少选择一门理科学科的选法有20-1=19种;故答案为:19,【题目点拨】本题考查排列组合.方法:1、直接考虑,适用包含情况较少时;2、间接考虑,当直接考虑情况较多时,可以用此法.16、千米【解题分析】
设上海为点,开罗为点.求两个城市之间的距离,即求两城市在地球上的球面距离.由题意可知上海和开罗都在北纬的位置,即在同一纬度的圆上,计算出此圆的半径,即可求.在三角形由余弦定理可求得,结合扇形弧长公式,即可求得两个城市之间的距离.【题目详解】设上海为点,开罗为点,地球半径为根据纬度定义,设北纬所在圆的半径为,可得:上海的位置约为东经,开罗的位置约为东经,故在北纬所在圆上的圆心角为:.在中得中,根据余弦定理可得:根据扇形弧长公式可得:劣弧故答案为:千米.【题目点拨】本题由经度,纬度求球面上两点距离,根据题意画出空间图形,理解经度和纬度的定义是解本题关键,考查空间想象能力,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),,,(2)21【解题分析】分析:(1)根据题意,求的,写出二项展示的通项,即可得到展开式的有理项;(2)由题意,展开式中所有项的系数的绝对值之和,即为展开式中各项系数之和,即可求解.详解:根据题意,,(1)展开式的通项为.于是当时,对应项为有理项,即有理项为(2)展开式中所有项的系数的绝对值之和,即为展开式中各项系数之和,在中令x=1得展开式中所有项的系数和为(1+2)7=37=21.所以展开式中所有项的系数和为21.点睛:本题主要考查二项式定理的通项与系数,属于简单题,二项展开式定理的问题也是高考命题热点之一,关于二项式定理的命题方向比较明确,主要从以下几个方面命题:(1)考查二项展开式的通项公式;(可以考查某一项,也可考查某一项的系数)(2)考查各项系数和和各项的二项式系数和;(3)二项式定理的应用.18、(Ⅰ)1;(Ⅱ)【解题分析】
(Ⅰ)当时求出的单调性,根据单调性即可求出最大值.(Ⅱ)求出的单调性.当时,,单调递增;当时,,单调递减,所以,再判断出的单调性即可.【题目详解】(Ⅰ)当时,,定义域为..令,得.当时,,单调递增,当时,,单调递减.所以.(Ⅱ),.令,得.当时,,单调递增;当时,,单调递减,所以.依题意有,设,则,所以在上单调递增.又,故,即实数的取值范围为.【题目点拨】本题考查了利用函数的单调性求最值、求含参数的范围、恒成立的问题.是高考中的必考点,也是高考中的压轴题.在解答时应该仔细审题.19、(1);(2).【解题分析】
(1)以分别为轴建立空间直角坐标系,计算直线对应向量,根据向量夹角公式得到答案.(2)分别计算两个平面的法向量,利用法向量的夹角计算二面角余弦值.【题目详解】(1)如图,以分别为轴建立空间直角坐标系,则,,异面直线与所成角的余弦值为.(2)平面的一个法向量为.设平面的一个法向量为,由得,,不妨取则,,,二面角的余弦值为.【题目点拨】本题考查了空间直角坐标系的应用,求异面直线夹角和二面角,意在考查学生的计算能力和空间想象能力.20、(1)1;(2).【解题分析】
(1)由条件求出,然后令即得展开式中各项系数的和(2)写出通项公式,然后令的次数为-1,即可得出答
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年临时施工围墙工程承包合同3篇
- 二零二四年度农业科技项目投资与合作合同3篇
- 2024年度股权转让合同:某创业公司股东之间股权转让及相关权益的协议
- 2024年建筑工程节能减排与环保技术应用合同
- 2024年建筑行业工人聘用协议样本版B版
- 2024年城市绿化环境综合整治工程协议模板版
- 2024年工业用地征用协议3篇
- 2024年商业展览场地预定合同3篇
- 2024年度物业服务合同服务内容扩展5篇
- 2024年公司合作框架协议3篇
- 外科学教案-泌尿系统肿瘤
- 2022年政府采购评审专家考试题库
- 广东佛山生育保险待遇申请表
- 零件结构的机械加工工艺性课件
- 2022年冷水机组设备采购招标文件
- 理论力学-课件
- 初中音乐《玫瑰三愿》教案
- 地质灾害危险性评估收费标准 版
- 保罗大叔分比萨绘本PPT课件
- 美国超声医学会AIUM透析通路术后血管超声评估实践指南中文(2014年版)江西超声网
- 考古学课件 单元8(秦汉考古:秦汉墓葬2)
评论
0/150
提交评论