2024届上海市崇明区数学高二第二学期期末学业质量监测模拟试题含解析_第1页
2024届上海市崇明区数学高二第二学期期末学业质量监测模拟试题含解析_第2页
2024届上海市崇明区数学高二第二学期期末学业质量监测模拟试题含解析_第3页
2024届上海市崇明区数学高二第二学期期末学业质量监测模拟试题含解析_第4页
2024届上海市崇明区数学高二第二学期期末学业质量监测模拟试题含解析_第5页
已阅读5页,还剩10页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届上海市崇明区数学高二第二学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号填写在答题卡上。2.回答选择题时,选出每小题答案后,用铅笔把答题卡上对应题目的答案标号涂黑,如需改动,用橡皮擦干净后,再选涂其它答案标号。回答非选择题时,将答案写在答题卡上,写在本试卷上无效。3.考试结束后,将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知i为虚数单位,复数z满足(1-i)·z=2i,是复数z的共轭复数,则下列关于复数z的说法正确的是()A.z=1-i B.C. D.复数z在复平面内表示的点在第四象限2.现有党员6名,从中任选2名参加党员活动,则不同选法的种数为()A.15 B.14 C.13 D.123.已知集合,,若图中的阴影部分为空集,则构成的集合为()A. B.C. D.4.已知随机变量,则参考数据:若,A.0.0148 B.0.1359 C.0.1574 D.0.3148.5.设随机变量X~N(μ,σ2)且P(X<1)=,P(X>2)=p,则P(0<X<1)的值为()A.p B.1-p C.1-2p D.-p6.若函数在上单调递增,则实数的取值范围为()A. B. C. D.7.已知二项式的展开式中二项式系数之和为64,则该展开式中常数项为A.-20 B.-15 C.15 D.208.某科研机构为了研究中年人秃头是否与患有心脏病有关,随机调查了一些中年人的情况,具体数据如下表所示:有心脏病无心脏病秃发20300不秃发5450根据表中数据得,由断定秃发与患有心脏病有关,那么这种判断出错的可能性为()附表:0.100.050.0250.0100.0050.0012.7063.8415.0246.6357.87910.828A.0.1 B.0.05C.0.01 D.0.0019.已知全集U=R,A={x|x≤0},B={x|x≥1},则集合CUA.{x|x≥0}B.{x|x≤1}C.{x|0≤x≤1}D.{x|0<x<1}10.设,则“”是“”的()A.充分不必要条件 B.必要条件C.充分条件 D.既不充分也不必要条件11.某次联欢会要安排3个歌舞类节目、2个小品类节目和1个相声类节目的演出顺序,则同类节目不相邻的排法种数是A.72 B.120 C.144 D.16812.函数的导函数的图象如图所示,则函数的图象可能是()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.给出定义:对于三次函数设是函数的导数,是的导数,若方程有实数解,则称点为函数的“拐点”,经过研究发现:任何一个三次函数都有“拐点”;任何一个三次函数都有对称中心,且“拐点”就是对称中心.已知函数.设.若则__________.14.中医药是反映中华民族对生命、健康和疾病的认识,具有悠久历史传统和独特理论及技术方法的医药学体系,是中华文明的瑰宝.某科研机构研究发现,某品种中成药的药物成份的含量(单位:)与药物功效(单位:药物单位)之间具有关系:.检测这种药品一个批次的5个样本,得到成份的平均值为,标准差为,估计这批中成药的药物功效的平均值为__________药物单位.15.有一个容器,下部分是高为的圆柱体,上部分是与圆柱共底面且母线长为的圆锥,现不考虑该容器内壁的厚度,则该容器的最大容积为___________.16.设双曲线的左、右焦点分别为,右顶点为A,若A为线段的一个三等分点,则该双曲线离心率的值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数.(1)若函数的最小值为2,求实数的值;(2)若当时,不等式恒成立,求实数的取值范围.18.(12分)已知函数的导函数为,的图象在点处的切线方程为,且.(1)求函数的解析式;(2)若对任意的:,存在零点,求的取值范围.19.(12分)在锐角中,内角,,的对边分别为,,,且.(Ⅰ)求的值;(Ⅱ)若,的面积为,求的值.20.(12分)已知10件不同产品中有3件是次品,现对它们一一取出(不放回)进行检测,直至取出所有次品为止.(1)若恰在第5次取到第一件次品,第10次才取到最后一件次品,则这样的不同测试方法数有多少?(2)若恰在第6次取到最后一件次品,则这样的不同测试方法数是多少?21.(12分)已知复数.(1)化简:;(2)如果,求实数的值.22.(10分)已知是定义在上的奇函数,且当时,.(Ⅰ)求的解析式;(Ⅱ)解不等式.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

把已知等式变形,利用复数代数形式的乘除运算化简求出z,然后逐一核对四个选项得答案.【题目详解】复数在复平面内表示的点在第二象限,故选C.【题目点拨】本题考查复数代数形式的乘除运算,考查复数的基本概念,是基础题.2、A【解题分析】分析:直接利用组合数求解即可.详解:现有党员6名,从中任选2名参加党员活动,则不同选法的种数为故选A点睛:本题考查组合的应用,属基础题..3、D【解题分析】

先化简集合,注意,由题意可知,,确定即可【题目详解】或,图中的阴影部分为空集,或,即或又,,故选D【题目点拨】考查维恩图的识别、对数计算、列举法及集合的关系4、B【解题分析】

根据正态分布函数的对称性去分析计算相应概率.【题目详解】因为即,所以,,又,,且,故选:B.【题目点拨】本题考查正态分布的概率计算,难度较易.正态分布的概率计算一般都要用到正态分布函数的对称性,根据对称性,可将不易求解的概率转化为易求解的概率.5、D【解题分析】

由,得正态分布概率密度曲线关于对称,又由,根据对称性,可得,进而可得,即可求解.【题目详解】由随机变量,可知随机变量服从正态分布,其中是图象的对称轴,又由,所以,又因为,根据正态分布概率密度曲线的对称性,可得,所以,故选D.【题目点拨】本题主要考查了正态分布曲线性质的简单应用,其中熟记正态分布概率密度曲线的对称性,合理推算是解答的关键,着重考查了推理与运算能力,属于基础题.6、D【解题分析】因为,由题设可得在上恒成立,令,则,又,且,故,所以问题转化为不等式在上恒成立,即不等式在上恒成立.令函数,则,应选答案D.点睛:本题的求解过程自始至终贯穿着转化与化归的数学思想,求函数的导数是第一个转化过程,换元是第二个转化过程;构造二次函数是第三个转化过程,也就是说为达到求出参数的取值范围,求解过程中大手笔地进行三次等价的转化与化归,从而使得问题的求解化难为易、化陌生为熟悉、化繁为简,彰显了数学思想的威力.7、C【解题分析】

利用二项式系数之和为64解得,再利用二项式定理得到常数项.【题目详解】二项式的展开式中二项式系数之和为64当时,系数为15故答案选C【题目点拨】本题考查了二项式定理,先计算出是解题的关键,意在考查学生的计算能力.8、D【解题分析】

根据观测值K2,对照临界值得出结论.【题目详解】由题意,,根据附表可得判断秃发与患有心脏病有关出错的可能性为.故选D.【题目点拨】本题考查了独立性检验的应用问题,理解临界值表格是关键,是基础题.9、D【解题分析】试题分析:因为A∪B={x|x≤0或x≥1},所以CU考点:集合的运算.10、A【解题分析】

分析两个命题的真假即得,即命题和.【题目详解】为真,但时.所以命题为假.故应为充分不必要条件.故选:A.【题目点拨】本题考查充分必要条件判断,充分必要条件实质上是判断相应命题的真假:为真,则是的充分条件,是的必要条件.11、B【解题分析】分两类,一类是歌舞类用两个隔开共种,第二类是歌舞类用三个隔开共种,所以N=+=120.种.选B.12、D【解题分析】

根据导数与函数单调性的关系,当时,函数单调递减,当时,函数单调递增,根据图像即可判断函数的单调性,然后结合图像判断出函数的极值点位置,从而求出答案。【题目详解】根据导数与函数单调性的关系,当时,函数单调递减,当时,函数单调递增,由导函数的图象可知,图像先单调递减,再单调递增,然后单调递减,最后单调递增,故排除A,C且第二个拐点(即函数的极大值点)在轴的右侧,排除B故选D【题目点拨】本题考查函数的单调性与导函数正负的关系,属于一般题。二、填空题:本题共4小题,每小题5分,共20分。13、-4037【解题分析】

由题意对已知函数求两次导数,令二阶导数为零,即可求得函数的中心对称,即有,,借助倒序相加的方法,可得进而可求的解析式,求导,当代入导函数解得,计算求解即可得出结果.【题目详解】函数函数的导数由得解得,而故函数关于点对称,故,两式相加得,则.同理,,,令,则,,故函数关于点对称,,两式相加得,则.所以当时,解得:,所以则.故答案为:-4037.【题目点拨】本题考查对新定义的理解,考查二阶导数的求法,仔细审题是解题的关键,考查倒序法求和,难度较难.14、92【解题分析】

由题可得,进而可得,再计算出,从而得出答案.【题目详解】5个样本成份的平均值为,标准差为,所以,,即,解得因为,所以所以这批中成药的药物功效的平均值药物单位【题目点拨】本题考查求几个数的平均数,解题的关键是求出,属于一般题.15、【解题分析】

设圆柱底面圆的半径为,分别表示出圆柱和圆锥的体积,利用导数求得极值点,并判断在极值点左右两侧的单调性,即可求得函数的最大值,即为容器的最大容积.【题目详解】设圆柱底面圆的半径为,圆柱体的高为,则圆柱的体积为;圆锥的高为,则圆锥的体积,所以该容器的容积为则,令,即,化简可得,解得,当时,,函数单调递增,当时,,函数单调递减,所以当时,取得最大值;代入可得,故答案为:.【题目点拨】本题考查了导数在体积最值问题中的综合应用,圆柱与圆锥的体积公式应用,属于中档题.16、3.【解题分析】分析:由题根据A为线段的一个三等分点,建立等式关系即可.详解:由题可知:故双曲线离心率的值为3.点睛:考查双曲线的离心率求法,根据题意建立正确的等式关系为解题关键,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)或.(2)【解题分析】

(1)利用绝对值不等式可得=2,即可得出的值.(2)不等式在上恒成立等价于在上恒成立,故的解集是的子集,据此可求的取值范围.【题目详解】解:(1)因为,所以.令,得或,解得或.(2)当时,.由,得,即,即.据题意,,则,解得.所以实数的取值范围是.【题目点拨】(1)绝对值不等式指:及,我们常利用它们求含绝对值符号的函数的最值.(2)解绝对值不等式的基本方法有公式法、零点分段讨论法、图像法、平方法等,利用公式法时注意不等号的方向,利用零点分段讨论法时注意分类点的合理选择,利用平方去掉绝对值符号时注意代数式的正负,而利用图像法求解时注意图像的正确刻画.18、(1)(2)【解题分析】

(1)根据切线、函数值、导数值计算解析式;(2)计算出在时的值域,再根据求解出的范围.【题目详解】解:(1)∵,∴,,∵,∴,①∵的图象在点处的切线方程为,∴当时,,且切线斜率,则,②.,③,联立解得,,,即;(2)当时,当时,当时,又,,,.所以因为对任意的,存在零点,所以,即,所以【题目点拨】对于形如的函数零点问题,可将其转化为的方程根的问题,或者也可以利用与的函数图象交点来解决问题.19、(1).(2).【解题分析】试题分析:(1)由题意化简得,由锐角三角形,得,,所以;(2)由,得,所以,由余弦定理解得.试题解析:(Ⅰ),,又为锐角三角形,,,.(Ⅱ)由,得,,,,即.点睛:本题考查解三角形的应用.解三角形在高考中属于基本题型,学生必须掌握其基本解法.本题中涉及到三角形的转化,二倍角公式的应用,以及面积公式、余弦定理的应用.学生需充分掌握三角函数化简及解三角形的公式,才能把握解题.20、(1);(2).【解题分析】

(1)根据题意,分析可得前4次取出的都是正品,第5次和第10次中取出2件次品,剩余的4个位置任意排列,由排列数公式计算可得答案;(2)根据题意,分析可得若第6次为最后一件次品,另2件在前5次中出现,前5次中有3件正品,由排列、组合数公式计算可得答案.【题目详解】解:(1)根据题意,若恰在第5次取到第一件次品,第10次才取到最后一件次品,则前4次取出的都是正品,第5次和第10次中取出2件次品,剩余的4个位置任意排列,则有种不同测试方法,(2)若第6次为最后一件次品,另2件在前5次中出现,前5次中有3件正品,则不同的测试方法有种.【题目点拨】本题考查排列、组合的应用,注意优先分析受到限制的元素、位置,属于基础题.21、(1);(2).【解题分析】

(1)由复数z求出,然后代入复数ω=z2+34化简求值即可;(2)把复数z代入,然后由复数代数形式的乘除运算化简求值,再根据复数相等的定义列出方程组,从而解方程组可求得答案.【题目详解

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论