版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
陕西省西安市高新沣东中学黄冈中学2024届数学高二下期末调研试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若将函数的图象上各点横坐标缩短到原来的(纵坐标不变)得到函数的图象,则下列说法正确的是()A.函数在上单调递增 B.函数的周期是C.函数的图象关于点对称 D.函数在上最大值是12.在极坐标系中,方程表示的曲线是()A.直线 B.圆 C.椭圆 D.双曲线3.设是边长为的正三角形,是的中点,是的中点,则的值为()A. B. C. D.4.把座位编号为1,2,3,4,5,6的六张电影票全部分给甲、乙、丙、丁四个人,每人最多得两张,甲、乙各分得一张电影票,且甲所得电影票的编号总大于乙所得电影票的编号,则不同的分法共有()A.90种 B.120种 C.180种 D.240种5.“”是双曲线的离心率为()A.充要条件 B.必要不充分条件 C.即不充分也不必要条件 D.充分不必要条件6.已知等差数列{an}的前n项和为Sn,若a5+a7+a9=21,则S13=()A.36 B.72 C.91 D.1827.若复数的实部与虚部相等,其中是实数,则()A.0 B.1 C.2 D.8.设函数,若a=),,则()A. B. C. D.9.设,若函数,有大于零的极值点,则()A. B. C. D.10.下列不等式中正确的有()①;②;③A.①③ B.①②③ C.② D.①②11.当时,函数,则下列大小关系正确的是()A. B.C. D.12.若关于的线性回归方程是由表中提供的数据求出,那么表中的值为()345634A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知高为H的正三棱锥P-ABC的每个顶点都在半径为R的球O的球面上,若二面角P-AB-C的正切值为4,则HR=14.某学校为了了解住校学生每天在校平均开销情况,随机抽取了500名学生,他们的每天在校平均开销都不低于20元且不超过60元,其频率分布直方图如图所示,则其中每天在校平均开销在元的学生人数为______.15.设函数f(x)=x3-x2-2x+5,若对任意x∈[1,2]都有f(x)<m成立,则实数m的取值范围是________.16.已知满足约束条件若目标函数的最大值为7,则的最小值为_______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知.猜想的表达式并用数学归纳法证明你的结论.18.(12分)在数列中,,,其中实数.(1)求,并由此归纳出的通项公式;(2)用数学归纳法证明(Ⅰ)的结论.19.(12分)在直角坐标系中,直线的参数方程为(为参数).以坐标原点为极点,轴的正半轴为极轴建立极坐标系,已知曲线的极坐标方程为.(1)求直线的普通方程及曲线的直角坐标方程;(2)若直线与曲线交于两点,,求.20.(12分)的内角,,所对的边分别为,,.向量与平行.(Ⅰ)求;(Ⅱ)若,求的面积.21.(12分)已知函数,.(1)当时,求的单调区间;(2)若有两个零点,求实数的取值范围.22.(10分)如图,平面,,.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值;(Ⅲ)若二面角的余弦值为,求线段的长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
根据三角函数伸缩变换特点可得到解析式;利用整体对应的方式可判断出在上单调递增,正确;关于点对称,错误;根据正弦型函数最小正周期的求解可知错误;根据正弦型函数在区间内值域的求解可判断出最大值无法取得,错误.【题目详解】将横坐标缩短到原来的得:当时,在上单调递增在上单调递增,正确;的最小正周期为:不是的周期,错误;当时,,关于点对称,错误;当时,此时没有最大值,错误.本题正确选项:【题目点拨】本题考查正弦型函数的性质,涉及到三角函数的伸缩变换、正弦型函数周期性、单调性和对称性、正弦型函数在一段区间内的值域的求解;关键是能够灵活应用整体对应的方式,通过正弦函数的图象来判断出所求函数的性质.2、B【解题分析】方程,可化简为:,即.整理得,表示圆心为(0,,半径为的圆.故选B.3、D【解题分析】
将作为基向量,其他向量用其表示,再计算得到答案.【题目详解】设是边长为的正三角形,是的中点,是的中点,故答案选D【题目点拨】本题考查了向量的乘法,将作为基向量是解题的关键.4、A【解题分析】
从6张电影票中任选2张给甲、乙两人,共种方法;再将剩余4张票平均分给丙丁2人,共有种方法;根据分步乘法计数原理即可求得结果.【题目详解】分两步:先从6张电影票中任选2张给甲,乙两人,有种分法;再分配剩余的4张,而每人最多两张,所以每人各得两张,有种分法,由分步原理得,共有种分法.故选:A【题目点拨】本题主要考查分步乘法计数原理与组合的综合问题.5、D【解题分析】
将双曲线标准化为,由于离心率为可得,在根据充分、必要条件的判定方法,即可得到结论.【题目详解】将双曲线标准化则根据离心率的定义可知本题中应有,则可解得,因为可以推出;反之成立不能得出.故选:.【题目点拨】本题考查双曲的离心率公式,考查充分不必要条件的判断,双曲线方程的标准化后离心率公式的正确使用是解答本题的关键,难度一般.6、C【解题分析】
根据等差数列的性质求出,根据等差数列的前项和公式可得.【题目详解】因为{an}为等差数列,所以,所以,所以.故选C.【题目点拨】本题考查了等差数列的性质、等差数列的前项和.属于基础题.7、D【解题分析】分析:根据复数乘法运算法则化简复数,结合已知条件,求出的值,代入后求模即可得到答案.详解:复数的实部与虚部相等,又有,解得,.故选D.点睛:本题考查复数代数形式的乘法运算和复数模的求法,属于基础题.8、D【解题分析】
把化成,利用对数函数的性质可得再利用指数函数的性质得到最后根据的单调性可得的大小关系.【题目详解】因为且,故,又在上为增函数,所以即.故选:.【题目点拨】本题考查对数的大小比较,可通过寻找合适的单调函数来构建大小关系,如果底数不统一,可以利用对数的运算性质统一底数,不同类型的数比较大小,应找一个中间数,通过它实现大小关系的传递,难度较易.9、B【解题分析】试题分析:设,则,若函数在x∈R上有大于零的极值点.即有正根,当有成立时,显然有,此时.由,得参数a的范围为.故选B.考点:利用导数研究函数的极值.10、B【解题分析】
逐一对每个选项进行判断,得到答案.【题目详解】①,设函数,递减,,即,正确②,设函数,在递增,在递减,,即,正确③,由②知,设函数,在递减,在递增,,即正确答案为B【题目点拨】本题考查了利用导函数求函数的单调性进而求最值来判断不等式关系,意在考查学生的计算能力.11、D【解题分析】
对函数进行求导得出在上单调递增,而根据即可得出,从而得出,从而得出选项.【题目详解】∵,∴,由于时,,函数在上单调递增,由于,故,所以,而,所以,故选D.【题目点拨】本题主要考查增函数的定义,根据导数符号判断函数单调性的方法,以及积的函数的求导,属于中档题.12、C【解题分析】由表可得样本中心点的坐标为,根据线性回归方程的性质可得,解出,故选C.二、填空题:本题共4小题,每小题5分,共20分。13、8【解题分析】
取线段AB的中点D,点P在平面ABC的射影点M,利用二面角的定义得出∠PDC为二面角P-AB-C的平面角,于此得出PMDM=4,并在RtΔOMC中,由勾股定理OM2+C【题目详解】取线段AB的中点D,设P在底面ABC的射影为M,则H=PM,连接CD,PD(图略).设PM=4k,易证PD⊥AB,CD⊥AB,则∠PDC为二面角P-AB-C的平面角,从而tan∠PDC=PMDM=4k在RtΔOMC中,OM2+CM2=OC故答案为:85【题目点拨】本题考查二面角的定义,考查多面体的外接球,在处理多面体的外接球时,要确定球心的位置,同时在求解时可引入一些参数去表示相关边长,可简化计算,考查逻辑推理能力,属于中等题。14、【解题分析】
由频率分布直方图得每天在校平均开销在元的学生的频率为,由此能求出每天在校平均开销在元的学生人数.【题目详解】解:由频率分布直方图得:每天在校平均开销在元的学生的频率为:,每天在校平均开销在元的学生人数为:.故答案为:1.【题目点拨】本题考查频数的求法,考查频率分布直方图的性质等基础知识,考查运算求解能力,考查函数与方程思想,是基础题.15、【解题分析】
,x∈[1,2]时,,在[1,2]上递增,由题意知m大于f(x)在x∈[-1,2]上的最大值,求得f(x)max=f(2)=7,所以m>7.16、7【解题分析】试题分析:作出不等式表示的平面区域,得到及其内部,其中把目标函数转化为,表示的斜率为,截距为,由于当截距最大时,最大,由图知,当过时,截距最大,最大,因此,,由于,当且仅当时取等号,.
考点:1、线性规划的应用;2、利用基本不等式求最值.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、证明见解析【解题分析】
首先计算,猜想,再用数学归纳法证明.【题目详解】猜想,下面用数学归纳法证明:①时,猜想成立;②假设时猜想成立,即则时,由及得又=,时猜想成立.由①②知.【题目点拨】本题考查了数学归纳法,意在考查学生的归纳推理能力和计算能力.18、(1)(2)见解析【解题分析】试题分析:(1),,可归纳猜测;(2)根据数学归纳法证明原理,当时,由显然结论成立.假设时结论成立,即只需证明当时,即可..试题解析:(1)由,及得,于是猜测:(2)下面用数学归纳法予以证明:当时,由显然结论成立.假设时结论成立,即那么,当时,由显然结论成立.由、知,对任何都有19、(1)x+y-1=0,;(2).【解题分析】
(1)由直线的参数方程,消去参数,即可得到普通方程;根据极坐标与直角坐标的转化公式,可将化为直角坐标方程;(2)将直线的参数方程代入曲线的直角坐标方程,再设两点对应的参数为,根据韦达定理,即可求出结果.【题目详解】(1)直线的普通方程为由,得,则,故曲线的直角坐标方程为.(2)将,代人,得,设两点对应的参数为,则,故.【题目点拨】本题主要考查参数方程与普通方程的互化,以及极坐标方程与直角坐标方程的互化,熟记公式即可,属于常考题型.20、(Ⅰ);(Ⅱ).【解题分析】
试题分析:(1)根据平面向量,列出方程,在利用正弦定理求出的值,即可求解角的大小;(2)由余弦定理,结合基本不等式求出的最大值,即得的面积的最大值.试题解析:(1)因为向量与平行,所以,由正弦定理得,又,从而tanA=,由于0<A<π,所以A=.(2)由余弦定理得a2=b2+c2-2bccosA,而a=,b=2,A=,得7=4+c2-2c,即c2-2c-3=0,因为c>0,所以c=3.故△ABC的面积为bcsinA=.考点:平面向量的共线应用;正弦定理与余弦定理.21、(1)见解析;(2)【解题分析】
(1)求出函数的导数,解关于导函数的不等式,求出函数的单调区间即可;(2)记t=lnx+x,通过讨论a的范围,结合函数的单调性以及函数的零点的个数判断a的范围即可.【题目详解】(1)定义域为:,当时,.∴在时为减函数;在时为增函数.(2)记,则在上单增,且.∴.∴在上有两个零点等价于在上有两个零点.①在时,在上单增,且,故无零点;②在时,在上单增,又,,故在上只有一个零点;③在时,由可知在时有唯一的一个极小值.若,,无零点;若,,只有一个零点;若时,,而,由于在时为减函数,可知:时,.从而,∴在和上各有一个零点.综上讨论可知:时有两个零点,即所求的取值范围是.【题目点拨】已知函数有零点求参数取值范围常用的方法和思路(1)直接法:直接根据题设条件构建关于参数的不等式,再通过解不等式确定参数范围;(2)分离参数法:先将参数分离,转化成求函数值域问题加以解决;(3)数形结合法:先对解析式变形,在同一平面直角坐标系中,画出函数的图象,然后数形结合求解.22、(Ⅰ)见证明;(Ⅱ)(Ⅲ)【解题分析】
首先利用几何体的特征建立空间直角坐标系(Ⅰ)利用直线BF的方向向量和平面ADE的法向量的关系即可证明线面平行;(Ⅱ)分别求得直线CE的方向向量和平面BDE的法向量,然后求解线面角的正弦值即可;(Ⅲ)首先确定两个半平面的法向量,然后利用二面角的余弦值计算公式得到关于CF长度的方程,解方程可得CF的长度.【题目详
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度技术开发合作合同:某互联网公司与软件开发团队的合作协议
- 2024年度幼儿园幼儿保险服务合同
- 药用糖浆市场发展现状调查及供需格局分析预测报告
- 2024年度个人劳动合同中农民工权益保障
- 2024年度安全保卫服务承包合同协议
- 2024年度企业间跨区域产品代理销售合同
- 2024年度工业区物业全面服务合同
- 电线市场发展现状调查及供需格局分析预测报告
- 眼影盘市场发展预测和趋势分析
- 2024年度商用厨房设备供货与安装合同
- JIS G4304-2021 热轧不锈钢板材、薄板材和带材
- 钢筋直螺纹连接课件PPT
- 小学综合实践活动《认识校园植物》优秀PPT课件
- 《现代汉语:语音部分》PPT课件(完整版)
- 变压器专业词汇英文翻译
- 藏传佛教英文词汇
- 铁路杂费收费项目和标准
- 定量订货与定期订货习题练习.
- 来料检验指导书铝型材
- 食品公司生产车间卫生管理制度3篇
- 某沟塘清淤回填施工专项方案
评论
0/150
提交评论