




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届四川省绵阳市江油中学数学高二下期末达标检测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.方程表示焦点在轴上的椭圆,则的取值范围是()A. B. C. D.2.已知,,,则的大小关系为().A. B. C. D.3.如表提供了某厂节能降耗技术改造后在生产A产品过程中记录的产品(吨)与相应的生产能耗(吨)的几组对应数据,根据表中提供的数据,求出关于的线性回归方程为,那么表中的值为()A.4.5 B.3.75 C.4 D.4.14.已知空间向量,且,则()A. B. C. D.5.已知函数f(x)在R上可导,且f(x)=x2+2xf′(2),则函数f(x)的解析式为()A.f(x)=x2+8x B.f(x)=x2-8xC.f(x)=x2+2x D.f(x)=x2-2x6.函数在的图象大致为()A. B.C. D.7.下面几种推理过程是演绎推理的是().A.某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人B.由三角形的性质,推测空间四面体的性质C.平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分D.在数列{an}中,a1=1,,,,由此归纳出{an}的通项公式8.某工厂生产某种产品的产量(吨)与相应的生产能耗(吨标准煤)有如下几组样本数据:根据相关检验,这组样本数据具有线性相关关系,通过线性回归分析,求得其回归直线的斜率为,则这组样本数据的回归直线方程是()A. B. C. D.9.可表示为()A. B. C. D.10.已知等式x4+a1x3+A.(1,2,3,4)B.(0,3,4,0)C.(0,-3,4,-1)D.(-1,0,2,-2)11.设等比数列的前n项和为,且满足,则A.4 B.5 C.8 D.912.已知袋中装有除颜色外完全相同的5个球,其中红球2个,白球3个,现从中任取1球,记下颜色后放回,连续摸取3次,设ξ为取得红球的次数,则PA.425 B.36125 C.9二、填空题:本题共4小题,每小题5分,共20分。13.已知平面上1个三角形最多把平面分成2个部分,2个三角形最多把平面分成8个部分,3个三角形最多把平面分成20个部分,4个三角形最多把平面分成38个部分,5个三角形最多把平面分成62个部分…,以此类推,平面上个三角形最多把平面分成____________个部分.14.已知数列的前项和为,,,则________.15.一个碗中有10个筹码,其中5个都标有2元,5个都标有5元,某人从此碗中随机抽取3个筹码,若他获得的奖金数等于所抽3个筹码的钱数之和,则他获得奖金的期望为________.16.已知是与的等比中项,则圆锥曲线的离心率是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)本着健康、低碳的生活理念,租自行车骑游的人越来越多.某自行车租车点的收费标准是每车每次租不超过两小时免费,超过两小时的收费标准为2元(不足1小时的部分按1小时计算).有人独立来该租车点则车骑游.各租一车一次.设甲、乙不超过两小时还车的概率分别为;两小时以上且不超过三小时还车的概率分别为;两人租车时间都不会超过四小时.(Ⅰ)求出甲、乙所付租车费用相同的概率;(Ⅱ)求甲、乙两人所付的租车费用之和为随机变量,求的分布列与数学期望18.(12分)已知.(1)求不等式的解集;(2)若,恒成立,求的取值范围.19.(12分)汽车尾气中含有一氧化碳,碳氢化合物等污染物,是环境污染的主要因素之一,汽车在使用若干年之后排放的尾气之中的污染物会出现递增的现象,所以国家根据机动车使用和安全技术、排放检验状况,对达到报废标准的机动车实施强制报废,某环境组织为了解公众对机动车强制报废标准的了解情况,随机调查了人,所得数据制成如下列联表:(1)若从这人中任选人,选到了解强制报废标准的人的概率为,问是否在犯错的概率不超过5﹪的前提下认为“机动车强制报废标准是否了解与性别有关”?(2)该环保组织从相关部门获得某型号汽车的使用年限与排放的尾气中浓度的数据,并制成如图所示的折线图,若该型号汽车的使用年限不超过年,可近似认为排放的尾气中浓度﹪与使用年限线性相关,确定与的回归方程,并预测该型号的汽车使用年排放尾气中的浓度是使用年的多少倍.附:,0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.82820.(12分)某县教育局为了检查本县甲、乙两所学校的学生对安全知识的学习情况,在这两所学校进行了安全知识测试,随机在这两所学校各抽取20名学生的考试成绩作为样本,成绩大于或等于80分的为优秀,否则为不优秀,统计结果如图:甲校乙校(1)从乙校成绩优秀的学生中任选两名,求这两名学生的成绩恰有一个落在内的概率;(2)由以上数据完成下面列联表,并回答能否在犯错的概率不超过0.1的前提下认为学生的成绩与两所学校的选择有关。甲校乙校总计优秀不优秀总计21.(12分)椭圆C:x2a2+y2(1)求椭圆C的方程(2)过F1作不垂直x轴的直线交椭圆于A,B两点弦AB的垂直平分线交x轴于M点,求证:AB22.(10分)已知函数.(I)解不等式:;(II)若函数的最大值为,正实数满足,证明:
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、A【解题分析】
将椭圆方程化为标准方程,根据题中条件列出关于的不等式,解出该不等式可得出实数的取值范围.【题目详解】椭圆的标准方程为,由于该方程表示焦点在轴上的椭圆,则,解得,因此,实数的取值范围是,故选A.【题目点拨】本题考查椭圆的标准方程,考查根据方程判断出焦点的位置,解题时要将椭圆方程化为标准形式,结合条件列出不等式进行求解,考查运算求解能力,属于中等题.2、A【解题分析】
利用指数函数、对数函数的性质求解.【题目详解】显然,,,,因此最大,最小,故选A.【题目点拨】本题考查三个数的大小的比较,是基础题,解题时要认真审题,注意指数函数、对数函数性质的合理运用.3、C【解题分析】
根据回归直线必过,求出代入回归直线可构造出方程求得结果.【题目详解】由数据表可知:,由回归直线可知:,即:,解得:本题正确选项:【题目点拨】本题考查利用回归直线求解实际数据点的问题,关键是能够明确回归直线必过点,属于基础题.4、C【解题分析】
根据空间向量的数量积等于0,列出方程,即可求解.【题目详解】由空间向量,又由,即,解得,故选C.【题目点拨】本题主要考查了空间向量中垂直关系的应用,其中解答中根据,利用向量的数量积等于0,列出方程即可求解,着重考查了推理与运算能力.5、B【解题分析】
求函数在处的导数即可求解.【题目详解】∵,.令,得,.故.【题目点拨】本题主要考查导数定义的运用.求解在处的导数是解题的关键.6、C【解题分析】,为偶函数,则B、D错误;又当时,,当时,得,则则极值点,故选C.点睛:复杂函数的图象选择问题,首先利用对称性排除错误选项,如本题中得到为偶函数,排除B、D选项,在A、C选项中,由图可知,虽然两个图象在第一象限都是先增后减,但两个图象的极值点位置不同,则我们采取求导来判断极值点的位置,进一步找出正确图象.7、C【解题分析】分析:根据归纳推理、类比推理、演绎推理得概念判断选择.详解:某校高三有8个班,1班有51人,2班有53人,3班有52人,由此推测各班人数都超过50人,这个是归纳推理;由三角形的性质,推测空间四面体的性质,是类比推理;平行四边形的对角线互相平分,菱形是平行四边形,所以菱形的对角线互相平分,是演绎推理;在数列{an}中,a1=1,,,,由此归纳出{an}的通项公式,是归纳推理,因此选C.点睛:本题考查归纳推理、类比推理、演绎推理,考查识别能力.8、C【解题分析】由题意可知,,线性回归方程过样本中心,所以只有C选项满足.选C.【题目点拨】线性回归方程过样本中心,所以可以代入四个选项进行逐一检验.9、B【解题分析】
根据排列数的定义可得出答案.【题目详解】,故选B.【题目点拨】本题考查排列数的定义,熟悉排列数公式是解本题的关键,考查理解能力,属于基础题.10、C【解题分析】试题分析:本题可以采用排除法求解,由题设条件,等式左右两边的同次项的系数一定相等,故可以比较两边的系数来排除一定不对的选项,由于立方项的系数与常数项相对较简单,宜先比较立方项的系数与常数项,由此入手,相对较简.解:比较等式两边x3的系数,得4=4+b1,则b1=1,故排除A,D;再比较等式两边的常数项,有1=1+b1+b2+b3+b4,∴b1+b2+b3+b4=1.故排除B故应选C考点:二项式定理点评:排除法做选择题是一种间接法,适合题目条件较多,或者正面证明、判断较困难的题型.11、D【解题分析】
由等比数列的通项公式和求和公式代入题中式子可求。【题目详解】由题意可得,,选D.【题目点拨】本题考查数列通项公式和求和公式基本量的运算。12、B【解题分析】
先根据题意得出随机变量ξ~B3,25【题目详解】由题意知,ξ~B3,15故选:B。【题目点拨】本题考查二项分布概率的计算,关键是要弄清楚随机变量所服从的分布,同时也要理解独立重复试验概率的计算公式,着重考查了推理与运算能力,属于中等题。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
设面上个三角形最多把平面分成个部分,归纳出,利用累加法的到答案.【题目详解】设面上个三角形最多把平面分成个部分.归纳:利用累加法:故答案为:【题目点拨】本题考查了归纳推理,累加法,综合性强,意在考查学生归纳推理和解决问题的能力.14、【解题分析】
利用已知条件求出数列前项的和以及前项的和,然后求解即可.【题目详解】解:由数列的前项和为,,,可得,,,,则.故答案为:.【题目点拨】本题考查数列的递推关系式的应用,考查转化思想以及计算能力,属于基础题.15、【解题分析】分析:先确定随机变量取法,再分别求对应概率,最后根据数学期望公式求期望.详解:获得奖金数为随机变量ξ,则ξ=6,9,12,15,所以ξ的分布列为:ξ691215PE(ξ)=6×+9×+12×+15×=.点睛:本题考查数学期望公式,考查基本求解能力.16、或【解题分析】分析:根据等比中项,可求出m的值为;分类讨论m的不同取值时圆锥曲线的不同,求得相应的离心率。详解:由等比中项定义可知所以当时,圆锥曲线为椭圆,离心率当时,圆锥曲线为双曲线,离心率所以离心率为或2点睛:本题考查了数列和圆锥曲线的综合应用,基本概念和简单的分类讨论,属于简单题。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(Ⅰ)(Ⅱ)ξ
0
2
4
6
8
P
数学期望Eξ=×2+×4+×6+×8=【解题分析】(1)由题意得,甲,乙在三小时以上且不超过四小时还车的概率分别为.记甲、乙两人所付得租车费用相同为事件,则.所以甲、乙两人所付租车费用相同的概率为.(2)的可能取值为0,2,4,6,8,,,,分布列如下表:
0
2
4
6
8
考点:离散型随机变量的分布列及概率.18、(1)(2)【解题分析】
(1)利用分类讨论法解不等式得解集;(2)先求出,,再解不等式得解.【题目详解】解:(1)不等式可化为当时,,,所以无解;当时,,所以;当时,,,所以.综上,不等式的解集是.(2),若,恒成立,则,解得:.【题目点拨】本题主要考查分类讨论法解不等式,考查绝对值三角不等式和不等式的恒成立问题,意在考查学生对这些知识的理解掌握水平,属于中档题.19、(1)可以在犯错的概率不超过5﹪的前提下认为“机动车强制报废标准是否了解与性别有关”(2);预测该型号的汽车使用12年排放尾气中的浓度是使用4年的4.2倍.【解题分析】
(1)根据题意计算,再利用,计算出,对照临界值得出结论;(2)由公式计算出,可得y关于t的回归方程,把t=12代入回归方程中,可预测该型号的汽车使用12年排放尾气中的浓度,即得。【题目详解】(1)设“从100人中任选1人,选到了解机动车强制报废标准的人”为事件,由已知得,解得,所以,,.假设:机动车强制报废标准是否了解与性别无关.由2×2列联表可知,的观测值,∴可以在犯错的概率不超过5﹪的前提下认为“机动车强制报废标准是否了解与性别有关”(2)由折线图中所给数据计算,得,,故,,所以所求回归方程为.故预测该型号的汽车使用12年排放尾气中的浓度为,因为使用4年排放尾气中的浓度为,所以预测该型号的汽车使用12年排放尾气中的浓度是使用4年的4.2倍.【题目点拨】本题考查列联表与独立性检验的应用,以及线性回归方程的求法,解题的关键是熟练掌握公式,考查学生基本的计算能力,属于中档题。20、(1);(2)在犯错的概率不超过0.1的前提下认为学生的成绩与两所学校的选择有关.【解题分析】分析:(1)根据频率分布直方图中矩形面积为1,求得a的值,再计算乙校成绩优秀的学生数,求出基本事件数,计算所求的概率值;(2)由题意填写列联表,计算,对照临界值得出结论.详解:(1)∵频率分布直方图中矩形面积为1成绩落在内的人数为成绩落在内的
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 公司小股东管理制度
- 公司监事会管理制度
- 养狗场卫生管理制度
- 发电厂防汛管理制度
- 地下站设备管理制度
- 城镇房屋抗震加固实施方案
- 客服724管理制度
- 陕西省专业技术人员继续教育2024公需课《专业技术人员能力素质提升》8学时题库及答案
- 微商部日常管理制度
- 教师住宿楼管理制度
- 预拌混凝土及原材料检测理论考试题库(含答案)
- 3~6岁儿童早期运动游戏干预课程设计研究-基于SKIP的研究证据
- 《植物生理学》课件第三章+植物的光合作用
- 游泳馆网架翻新施工组织方案设计
- 3.1 定格青春——向艺术家学创作 课件-2021-2022学年高中美术人美版(2019)选修绘画
- 有机化学所有的命名--超全.
- 引水罐的设计计算
- 三年级译林版英语下学期按要求写句子专项强化练习题
- 电缆接线工艺设计规范流程
- 中医经络减肥课件
- 5WHY分析法培训
评论
0/150
提交评论