




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届内蒙古太仆寺旗宝昌一中数学高二第二学期期末学业质量监测模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.现有8个人排成一排照相,其中甲、乙、丙三人两两不相邻的排法的种数为()A. B. C. D.2.已知函数,且,其中是的导函数,则()A. B. C. D.3.定义在上的函数若满足:①对任意、,都有;②对任意,都有,则称函数为“中心捺函数”,其中点称为函数的中心.已知函数是以为中心的“中心捺函数”,若满足不等式,当时,的取值范围为()A. B. C. D.4.已知双曲线的离心率为,过其右焦点作斜率为的直线,交双曲线的两条渐近线于两点(点在轴上方),则()A. B. C. D.5.函数f(x)=x2ex在区间(a,a+1)上存在极值点,则实数aA.(-3,-2)∪(-1,0) B.(-3,-2) C.(-6.设是边长为的正三角形,是的中点,是的中点,则的值为()A. B. C. D.7.已知函数与分别是定义在上的奇函数和偶函数,且,则的值为()A. B. C. D.8.一只袋内装有个白球,个黑球,所有的球除颜色外完全相同,连续不放回地从袋中取球,直到取出黑球为止,设此时取出了个白球,则下列概率等于的是()A. B. C. D.9.已知,,,则下列结论正确的是()A. B. C. D.10.设集合A={x|x>0},B={x|x2-5x-14<0},则A.{x|0<x<5} B.{x|2<x<7}C.{x|2<x<5} D.{x|0<x<7}11.对于平面上点和曲线,任取上一点,若线段的长度存在最小值,则称该值为点到曲线的距离,记作,若曲线是边长为的等边三角形,则点集所表示的图形的面积为()A. B. C. D.12.已知两条不同直线a、b,两个不同平面、,有如下命题:①若,,则;②若,,则;③若,,则;④若,,,则以上命题正确的个数为()A.3 B.2 C.1 D.0二、填空题:本题共4小题,每小题5分,共20分。13.若函数在区间上为单调增函数,则的取值范围是__________.14.复数满足,则的最小值是___________.15.已知,则a与b的大小关系______.16.已知函数,若,则实数的取值范围为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)在四棱锥中,四边形是平行四边形,且,.(1)求异面直线与所成角的余弦值;(2)若,,二面角的平面角的余弦值为,求的正弦值.18.(12分)已知数列满足,(1)求,并猜想的通项公式;(2)用数学归纳法证明(1)中所得的猜想.19.(12分)在直角坐标系中,曲线的参数方程为(为参数),在以坐标为极点,轴正半轴为极轴的极坐标系中,直线的极坐标方程为.(1)求曲线的普通方程,并指出曲线是什么曲线;(2)若直线与曲线相交于两点,,求的值.20.(12分)已知函数.(1)当时,求不等式的解集;(2)若不等式对任意的实数恒成立,求实数的取值范围.21.(12分)已知数列满足(且),且,设,,数列满足.(1)求证:是等比数列,并求出数列的通项公式;(2)求数列的前项和.22.(10分)人站成两排队列,前排人,后排人.(1)一共有多少种站法;(2)现将甲、乙、丙三人加入队列,前排加一人,后排加两人,其他人保持相对位置不变,求有多少种不同的加入方法.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】先排剩下5人,再从产生的6个空格中选3个位置排甲、乙、丙三人,即,选C.2、A【解题分析】分析:求出原函数的导函数,然后由f′(x)=2f(x),求出sinx与cosx的关系,同时求出tanx的值,化简要求解的分式,最后把tanx的值代入即可.详解:因为函数f(x)=sinx-cosx,所以f′(x)=cosx+sinx,由f′(x)=2f(x),得:cosx+sinx=2sinx-2cosx,即3cosx=sinx,所以.所以=.故答案为A.点睛:(1)本题主要考查求导和三角函数化简求值,意在考查学生对这些知识的掌握水平和分析转化计算能力.(2)解答本题的关键是=.这里利用了“1”的变式,1=.3、C【解题分析】
先结合题中条件得出函数为减函数且为奇函数,由,可得出,化简后得出,结合可求出,再由结合不等式的性质得出的取值范围.【题目详解】由知此函数为减函数.由函数是关于的“中心捺函数”,知曲线关于点对称,故曲线关于原点对称,故函数为奇函数,且函数在上递减,于是得,.,.则当时,令m=x,y=n则:问题等价于点(x,y)满足区域,如图阴影部分,由线性规划知识可知为(x,y)与(0,0)连线的斜率,由图可得,,故选:C.【题目点拨】本题考查代数式的取值范围的求解,解题的关键就是分析出函数的单调性与奇偶性,利用函数的奇偶性与单调性将题中的不等关系进行转化,应用到线性规划的知识,考查分析问题和解决问题的能力,属于难题.4、B【解题分析】
由双曲线的离心率可得a=b,求得双曲线的渐近线方程,设右焦点为(c,0),过其右焦点F作斜率为2的直线方程为y=2(x﹣c),联立渐近线方程,求得B,C的坐标,再由向量共线定理,可得所求比值.【题目详解】由双曲线的离心率为,可得ca,即有a=b,双曲线的渐近线方程为y=±x,设右焦点为(c,0),过其右焦点F作斜率为2的直线方程为y=2(x﹣c),由y=x和y=2(x﹣c),可得B(2c,2c),由y=﹣x和y=2(x﹣c)可得C(,),设λ,即有0﹣2c=λ(0),解得λ=1,即则1.故选:B.【题目点拨】本题考查双曲线的方程和性质,主要是离心率和渐近线方程,考查方程思想和运算能力,属于中档题.5、A【解题分析】
求得f'(x)=x(2+x)ex,函数f(x)=x2ex在区间(a,a+1)【题目详解】f'(x)=2xe∵函数f(x)=x2ex在区间(a,a+1)上存在极值点令f'(x)=0,解得x=0或-2.∴a<0<a+1,或a<-2<a+1,解得:-1<a<0,或-3<a<-2,∴实数a的取值范围为(-3,-2)∪(-1,0).故选【题目点拨】本题考查了利用导数研究函数的极值,考查了推理能力与计算能力,意在考查转化与划归思想的应用以及综合所学知识解答问题的能力,属于中档题.6、D【解题分析】
将作为基向量,其他向量用其表示,再计算得到答案.【题目详解】设是边长为的正三角形,是的中点,是的中点,故答案选D【题目点拨】本题考查了向量的乘法,将作为基向量是解题的关键.7、C【解题分析】
根据条件可得,与联立便可解出和,从而得到的值。【题目详解】①;;又函数与分别是定义在上的奇函数和偶函数;,;②;联立①②,解得所以;故答案选C【题目点拨】本题考查奇函数、偶函数的定义,解题的关键是通过建立关于与的方程组求出和的解析式,属于中档题。8、D【解题分析】
当时,前2个拿出白球的取法有种,再任意拿出1个黑球即可,有种取法,在这3次拿球中可以认为按顺序排列,由此能求出结果.【题目详解】当时,即前2个拿出的是白球,第3个是黑球,前2个拿出白球,有种取法,再任意拿出1个黑球即可,有种取法,而在这3次拿球中可以认为按顺序排列,此排列顺序即可认为是依次拿出的球的顺序,即,.故选:D.【题目点拨】本题考查超几何分布概率模型,考查运算求解能力,属于基础题.9、B【解题分析】
根据指数函数、对数函数的单调性分别求得的范围,利用临界值可比较出大小关系.【题目详解】;;且本题正确选项:【题目点拨】本题考查利用指数函数、对数函数的单调性比较大小的问题,关键是能够通过临界值来进行区分.10、D【解题分析】试题分析:由B={x|x2-5x-14<0}={x|-2<x<7},所以考点:集合的运算.11、D【解题分析】
根据可画出满足题意的点所构成的平面区域;分别求解区域各个构成部分的面积,加和得到结果.【题目详解】由定义可知,若曲线为边长为的等边三角形,则满足题意的点构成如下图所示的阴影区域其中,,,,,,又又阴影区域面积为:即点集所表示的图形的面积为:本题正确选项:【题目点拨】本题考查新定义运算的问题,关键是能够根据定义,找到距离等边三角形三边和顶点的最小距离小于等于的点所构成的区域,易错点是忽略三角形内部的点,造成区域缺失的情况.12、C【解题分析】
直接利用空间中线线、线面、面面间的位置关系逐一判定即可得答案.【题目详解】①若a∥α,b⊂α,则a与b平行或异面,故①错误;②若a∥α,b∥α,则a∥b,则a与b平行,相交或异面,故②错误;③若,a⊂α,则a与β没有公共点,即a∥β,故③正确;④若α∥β,a⊂α,b⊂β,则a与b无公共点,∴平行或异面,故④错误.∴正确的个数为1.故选C.【题目点拨】本题考查命题真假的判断,考查直线与平面之间的位置关系,涉及到线面、面面平行的判定与性质定理,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、[1,+∞)【解题分析】函数在区间上为单调增函数等价于导函数在此区间恒大于等于0,故14、【解题分析】
点对应的点在以为圆心,1为半径的圆上,要求的最小值,只要找出圆上的点到原点距离最小的点即可,求出圆心到原点的距离,最短距离要减去半径即可得解.【题目详解】解:复数满足,点对应的点在以为圆心,1为半径的圆上,要求的最小值,只要找出圆上的点到原点距离最小的点即可,连接圆心与原点,长度是,最短距离要减去半径故答案为:【题目点拨】本题考查复数的几何意义,本题解题的关键是看出复数对应的点在圆上,根据圆上到原点的最短距离得到要求的距离,属于基础题.15、a<b【解题分析】
可先利用作差法比较两数平方的大小,然后得出两数的大小关系.【题目详解】解:因为,,所以,因为,所以,而,所以得到.【题目点拨】本题考查了综合法与分析法比较两数的大小关系,解题时可先用分析法进行分析,再用综合法进行书写解题过程.16、.【解题分析】
作出函数f(x)的图象,设f(a)=f(b)=t,根据否定,转化为关于t的函数,构造函数,求出函数的导数,利用导数研究函数的单调性和取值范围即可.【题目详解】作出函数f(x)的图象如图:设f(a)=f(b)=t,则0<t≤,∵a<b,∴a≤1,b>﹣1,则f(a)=ea=t,f(b)=2b﹣1=t,则a=lnt,b=(t+1),则a﹣2b=lnt﹣t﹣1,设g(t)=lnt﹣t﹣1,0<t≤,函数的导数g′(t)=﹣1=,则当0<t≤时g′(t)>0,此时函数g(t)为增函数,∴g(t)≤g()=ln﹣﹣1=﹣﹣2,即实数a﹣2b的取值范围为(﹣∞,﹣﹣2],故答案为:(﹣∞,﹣﹣2].【题目点拨】本题主要考查分段函数的应用,涉及函数与方程的关系,利用换元法转化为关于t的函数,构造函数,求函数的导数,利用导数研究函数的单调性和最值是解决本题的关键.综合性较强.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)0;(2).【解题分析】
(1)首先设与的交点为,连接.根据已知及三角形全等的性质可证明面,即可得到异面直线与所成角的余弦值.(2)首先作于点,连接,易证,得到,即为二面角的一个平面角,再利用余弦定理即可得到的正弦值.【题目详解】(1)设与的交点为,连接.因为四边形是平行四边形,且,所以四边形是菱形.因为,,,所以,.又因为,,及,所以,,即,面.故异面直线与夹角的余弦值为.(2)作于点,连接,因为,,,所以,所以,,,即为二面角的一个平面角,设,则,,解得,.所以的正弦值为.【题目点拨】本题第一问考查异面直线成角问题,第二问考查二面角的计算,属于中档题.18、(1),猜想.(2)见解析.【解题分析】分析:(1)直接由原式计算即可得出,然后根据数值规律得,(2)直接根据数学归纳法的三个步骤证明即可.详解:(1),猜想.(2)当时,命题成立;假设当时命题成立,即,故当时,,故时猜想也成立.综上所述,猜想成立,即.点睛:考查数学归纳法,对数学归纳法的证明过程的熟悉是解题关键,属于基础题.19、(1)曲线的轨迹是以为圆心,3为半径的圆.(2)【解题分析】
(1)由曲线的参数方程,消去参数,即可得到曲线的普通方程,得出结论;(2)把直线的极坐标方程化为直角坐标方程,再由点到直线的距离公式,列出方程,即可求解。【题目详解】(1)由(为参数),消去参数得,故曲线的普通方程为.曲线的轨迹是以为圆心,3为半径的圆.(2)由,展开得,的直角坐标方程为.则圆心到直线的距离为,则,解得.【题目点拨】本题主要考查了参数方程与普通方程,极坐标方程与直角坐标方程的互化及应用,重点考查了转化与化归能力.通常遇到求曲线交点、距离、线段长等几何问题时,求解的一般方法是分别化为普通方程和直角坐标方程后求解,或者直接利用极坐标的几何意义求解.要结合题目本身特点,确定选择何种方程.20、(1);(2).【解题分析】
(1)当时,讨论取值范围去绝对值符号,计算不等式.(2)利用绝对值不等式求函数最大值为,计算得到答案.【题目详解】解:(1)当时不等式即为①当时不等
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025年湖北省襄阳五中、钟祥一中、夷陵中学高三下学期一次质量调研生物试题含解析
- 2025年山东省曲阜市田家炳中学初三下期中联考物理试题含解析
- 广东省清连中学2025届高三物理试题三轮复习系列七-出神入化7含解析
- 云南交通职业技术学院《胶东红色文化概论》2023-2024学年第二学期期末试卷
- 武汉工程职业技术学院《软件开发新技术》2023-2024学年第二学期期末试卷
- 成都航空职业技术学院《定性数据统计分析》2023-2024学年第一学期期末试卷
- 眼耳鼻喉科年终述职报告
- 哈密职业技术学院《社会调查理论与实践》2023-2024学年第二学期期末试卷
- 凯里学院《计算机高级语言(c语言)》2023-2024学年第二学期期末试卷
- 行政人员工作心得13篇
- 视力防控健康教育
- 太乙课堂游戏最终版
- 大数据分析和可视化平台使用手册
- 2025年杭州医学院考研试题及答案
- 2025年骨科入科考试题及答案
- 2025年山西工程职业学院单招职业倾向性测试题库含答案
- 基于三新背景下的2025年高考生物二轮备考策略讲座
- 医疗机构自杀风险评估与预防措施
- 全国自考《银行会计学》2024年7月《银行会计学》自学考试试题及答案
- 术前预防感染
- 拔高卷-2021-2022学年七年级语文下学期期中考前必刷卷(福建专用)(考试版)
评论
0/150
提交评论