




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
江苏省盐城市时杨中学2024届数学高二第二学期期末检测模拟试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图是函数的导函数的图象,则下列说法正确的是()A.是函数的极小值点B.当或时,函数的值为0C.函数关于点对称D.函数在上是增函数2.若f(x)=ax2+bx+c(c≠0)是偶函数,则g(x)=ax3+bx2+cx()A.是奇函数 B.是偶函数C.既是奇函数又是偶函数D.既不是奇函数又不是偶函数3.随机变量的概率分布为,其中是常数,则()A. B. C. D.4.如图,在三棱锥中,点D是棱的中点,若,,,则等于()A. B. C. D.5.等于()A. B.2 C.-2 D.+26.已知偶函数在单调递减,则不等式的解集为()A. B. C. D.7.设函数,满足,若函数存在零点,则下列一定错误的是()A. B. C. D.8.用反证法证明:“实数中至少有一个不大于0”时,反设正确的是()A.中有一个大于0 B.都不大于0C.都大于0 D.中有一个不大于09.已知全集,集合,则()A. B. C. D.10.在直角坐标系中,以为极点,轴正半轴为极轴,建立极坐标系,直线的参数方程为(为参数),曲线的方程为,直线与曲线相交于两点,当的面积最大时,()A. B. C. D.11.已知单位圆有一条长为的弦,动点在圆内,则使得的概率为()A. B. C. D.12.两个变量的相关关系有正相关,负相关,不相关,则下列散点图从左到右分别反映的变量间的相关关系是A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.不等式的解集是__________.14.已知实数x,y满足不等式组,则的最大值是__________.15.已知某几何体的俯视图是如图所示的矩形,正视图是一个底边长为8.高为4的等腰三角形,侧视图是一个底边长为6.高为4的等腰三角形,则该几何体的体积为______;侧面积为______.16.己知幂函数在上单调递减,则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)为了了解甲、乙两校学生自主招生通过情况,从甲校抽取60人,从乙校抽取50人进行分析。(1)根据题目条件完成上面2×2列联表,并据此判断是否有99%的把握认为自主招生通过情况与学生所在学校有关;(2)现已知甲校三人在某大学自主招生中通过的概率分别为,,,用随机变量X表示三人在该大学自主招生中通过的人数,求X的分布列及期望.参考公式:.参考数据:18.(12分)已知.(1)求的最小值;(2)已知为正数,且,求证.19.(12分)袋子中装有大小形状完全相同的5个小球,其中红球3个白球2个,现每次从中不放回的取出一球,直到取到白球停止.(1)求取球次数的分布列;(2)求取球次数的期望和方差.20.(12分)如图,已知四边形ABCD与四边形BDEF均为菱形,,且求证:平面BDEF;求二面角的余弦值.21.(12分)如图,一张坐标纸上已作出圆及点,折叠此纸片,使与圆周上某点重合,每次折叠都会留下折痕,设折痕与直线的交点为,令点的轨迹为曲线.(1)求曲线的方程;(2)若直线与轨迹交于、两点,且直线与以为直径的圆相切,若,求的面积的取值范围.22.(10分)选修4—4:坐标系与参数方程在直角坐标系中,直线的参数方程为(为参数).以原点为极点,轴的正半轴为极轴建立极坐标系,曲线的极坐标方程为.点的直角坐标为,直线与曲线交于两点.(Ⅰ)写出点的极坐标和曲线的普通方程;(Ⅱ)当时,求点到两点的距离之积.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
由导函数的图象得到原函数的增减区间及极值点,然后逐一分析四个命题即可得到答案.【题目详解】由函数f(x)的导函数图象可知,当x∈(−∞,−a),(−a,b)时,f′(x)<0,原函数为减函数;当x∈(b,+∞)时,f′(x)>0,原函数为增函数.故不是函数的极值点,故A错误;当或时,导函数的值为0,函数的值未知,故B错误;由图可知,导函数关于点对称,但函数在(−∞,b)递减,在(b,+∞)递增,显然不关于点对称,故C错误;函数在上是增函数,故D正确;故答案为:D.【题目点拨】本题考查函数的单调性与导数的关系,属于导函数的应用,考查数形结合思想和分析能力,属于中等题.2、A【解题分析】若f(x)=ax2+bx+c(c≠0)是偶函数,则,则是奇函数,选A.3、B【解题分析】分析:由已知得可得a值,在求出期望算方差即可.详解:因为随机变量的概率分布为,故得,故E(X)=,又,而,故=,选B点睛:考查分布列的性质和期望、方差的计算,熟悉公式即可,属于基础题.4、A【解题分析】
利用向量的三角形法则,表示所求向量,化简求解即可.【题目详解】解:由题意在三棱锥中,点是棱的中点,若,,,可知:,,,.故选:.【题目点拨】本题考查向量的三角形法则,空间向量与平面向量的转化,属于基础题.5、D【解题分析】∵.故选D6、B【解题分析】
因为函数是偶函数,所以,那么不等式转化为,利用单调性,解不等式.【题目详解】函数是偶函数,在单调递减,,即.故选B.【题目点拨】本题考查了偶函数利用单调性解抽象不等式,关键是利用公式转化不等式,利用的单调性解抽象不等式,考查了转化与化归的思想.7、C【解题分析】分析:先根据确定符号取法,再根据零点存在定理确定与可能关系.详解:单调递增,因为,所以或,根据零点存在定理得或或,因此选C.点睛:确定零点往往需将零点存在定理与函数单调性结合起来应用,一个说明至少有一个,一个说明至多有一个,两者结合就能确定零点的个数.8、C【解题分析】
根据用反证法证明数学命题的方法和步骤,应先假设命题的否定成立,而要证明题的否定为:“都大于0”,从而得出结论.【题目详解】解:根据用反证法证明数学命题的方法和步骤,应先假设命题的否定成立,而命题:“实数中至少有一个不大于0”的否定为“都大于0”,故选:.【题目点拨】本题主要考查用命题的否定,反证法证明数学命题的方法和步骤,把要证的结论进行否定,得到要证的结论的反面,是解题的突破口,属于基础题.9、D【解题分析】
首先解出集合,,由集合基本运算的定义依次对选项进行判定。【题目详解】由题可得,;所以,则选项正确;故答案选D【题目点拨】本题考查一元二次方程、绝对值不等式的解法以及集合间基本运算,属于基础题。10、D【解题分析】
先将直线直线与曲线转化为普通方程,结合图形分析可得,要使的面积最大,即要为直角,从而求解出。【题目详解】解:因为曲线的方程为,两边同时乘以,可得,所以曲线的普通方程为,曲线是以为圆心,2为半径的上半个圆.因为直线的参数方程为(为参数),所以直线的普通方程为,因为,所以当为直角时的面积最大,此时到直线的距离,因为直线与轴交于,所以,于是,所以,故选D。【题目点拨】本题考查了曲线的参数方程、极坐标方程与普通方程之间的互化,同时考查了直线与圆的位置关系,数形结合是本题的核心思想。11、A【解题分析】
建立直角坐标系,则,设点坐标为,则,故,则使得的概率为,故选A.【题目点拨】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.(3)几何概型有两个特点:一是无限性,二是等可能性.基本事件可以抽象为点,尽管这些点是无限的,但它们所占据的区域都是有限的,因此可用“比例解法”求解几何概型的概率.12、D【解题分析】
分别分析三个图中的点的分布情况,即可得出图是正相关关系,图不相关的,图是负相关关系.【题目详解】对于,图中的点成带状分布,且从左到右上升,是正相关关系;对于,图中的点没有明显的带状分布,是不相关的;对于,图中的点成带状分布,且从左到右是下降的,是负相关关系.故选:D.【题目点拨】本题考查了利散点图判断相关性问题,是基础题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】分析:把不等式化为同底的不等式,利用指数函数的单调性即可求解.详解:原不等式可以化为,所以,故或者,不等式的解集为,填.点睛:一般地,对于不等式,(1)如果,则原不等式等价于;(2)如果,则原不等式等价于.14、12.【解题分析】分析:画出不等式组表示的可行域,平移,结合所画可行域,可求得的最大值.详解:作出不等式组表示的平面区域如阴影部分,分析知,当时,平移直线,由图可得直线经过点时,取得最大值,且,故答案为.点睛:本题主要考查线性规划中利用可行域求目标函数的最值,属简单题.求目标函数最值的一般步骤是“一画、二移、三求”:(1)作出可行域(一定要注意是实线还是虚线);(2)找到目标函数对应的最优解对应点(在可行域内平移变形后的目标函数,最先通过或最后通过的顶点就是最优解);(3)将最优解坐标代入目标函数求出最值.15、64【解题分析】
根据三视图可得该几何体表示一个四棱锥,且四棱锥的底面是一个长为8,宽为6的矩形,其中高为4,即可利用体积公式和表面积公式求解,得到答案.【题目详解】由题意可知,这个几何体是一个四棱锥,且四棱锥的底面是一个长为8,宽为6的矩形,四棱锥高为4,所以四棱锥的体积为,四棱锥的侧面为等腰三角形,底边长分别为,斜高分别为,所以侧面积为.【题目点拨】本题主要考查了空间几何体的三视图的应用,以及四棱锥的体积与侧面积的计算,其中解答中根据几何体的三视图得到几何体的结构特征是解答的关键,着重考查了推理与运算能力,属于基础题.16、2【解题分析】
先由幂函数的定义,得到,求出,再由题意,根据幂函数的单调性,即可得出结果.【题目详解】因为为幂函数,所以或,又在上单调递减,由幂函数的性质,可得:,解得:,所以.故答案为:.【题目点拨】本题主要考查由幂函数单调性求参数,熟记幂函数的定义,以及幂函数的单调性即可,属于常考题型.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)见解析【解题分析】
(1)由题可得表格,再计算,与6.635比较大小即可得到答案;(2)随机变量X的可能取值为0,1,2,3,分别利用乘法原理计算对应概率,从而求得分布列和数学期望.【题目详解】(1)2×2列联表如下通过未通过总计甲校402060乙校203050总计6050110由算得,,所以有99%的把握认为学生的自主招生通过情况与所在学校有关(2)设A,B,C自主招生通过分别记为事件M,N,R,则∴随机变量X的可能取值为0,1,2,3.,所以随机变量X的分布列为:X0123P【题目点拨】本题主要考查独立性检验统计案例,随机变量的分布列和数学期望,意在考查学生的分析能力,转化能力及计算能力,比较基础.18、(1)3;(2)证明见解析.【解题分析】
(1)利用绝对值不等式求得函数的最小值.(2)利用基本不等式,证得不等式成立.【题目详解】(1)依题意,当且仅当时,取得最小值,故的最小值为.(2)由(1)知,,当且仅当时等号成立.【题目点拨】本小题主要考查利用绝对值不等求得最小值,考查利用基本不等式证明不等式,属于基础题.19、(1)见解析(2),【解题分析】
根据相互独立事件概率求出离散型随机变量的分布列、期望和方差.【题目详解】解:(1)由题设知,,则的分布列为1234(2)则取球次数的期望,的方差.【题目点拨】本题考查离散型随机变量的分布列、期望和方差,属于中档题.20、(1)见证明;(2).【解题分析】
设AC、BD交于点O,连结OF、DF,推导出,,,由此能证明平面BDEF.以OA为x轴,OB为y轴,OF为z轴,建立空间直角坐标系,利用向量法能求出二面角的余弦值.【题目详解】设AC、BD交于点O,连结OF、DF,四边形ABCD与四边形BDEF均为菱形,,且,,,,四边形ABCD与四边形BDEF均为菱形,,,平面BDEF.,,平面ABCD,以OA为x轴,OB为y轴,OF为z轴,建立空间直角坐标系,设,则0,,0,,1,,0,,,1,,,设平面ABF的法向量y,,则,取,得,设平面BCF的法向量y,,则,取,得,设二面角的平面角为,由图可知为钝角则.二面角的余弦值为.【题目点拨】本题考查线面垂直的证明,考查二面角的余弦值的求法,考查二面角的求法,考查空间中线线、线面、面面间的位置关系等基础知识,考查运算求解能力,是中档题.21、(1);(2)【解题分析】
分析:(1)根据垂直平分线的性质可得的轨迹是以为焦点的椭圆,且,可得,的轨迹的方程为;(2)与以为直径的圆相切,则到的距离:,即,由,消去,得,由平面向量数量积公式可得,由三角形面积公式可得,换元后,利用单调性可得结果.详解:(1)折痕为PP′的垂直平分线,则|MP|=|MP′|,由题意知圆E的半径为,∴|ME|+|MP|=|ME|+|MP′|=>|EP|,∴E的轨迹是以E、P为焦点的椭圆,且,∴,∴M的轨迹C的方程为.(2)与以EP为
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025-2030年中国镀锌层钝化剂行业发展趋势及投资战略研究报告
- 2025-2030年中国铅酸蓄电池行业市场现状分析规划研究报告
- 2025-2030年中国针织服装市场市场运行动态及投资战略研究报告
- 2025-2030年中国酮洛芬肠溶胶囊行业十三五规划与发展趋势分析报告
- 2025-2030年中国艾灸养生仪产业发展现状及前景趋势分析报告
- 2025-2030年中国美甲行业运行现状及发展前景分析报告
- 2025年四川省建筑安全员C证考试(专职安全员)题库及答案
- 皖北卫生职业学院《时间序列分析》2023-2024学年第二学期期末试卷
- 中央财经大学《商务智能》2023-2024学年第二学期期末试卷
- 天府新区航空旅游职业学院《广播影视广告设计与制作》2023-2024学年第二学期期末试卷
- 幼儿看图填数
- 酒店项目精装修工程施工组织设计
- 小学生研学旅行展示ppt模板
- 《思想道德与法治》第一章
- 新概念英语第2册课文word版
- 大学生职业生涯规划(高职)PPT完整全套教学课件
- 微信小程序开发实战(第2版)全套PPT完整教学课件
- 部编版语文四年级下册全册大单元整体作业设计
- 重庆自然博物馆
- 收养人抚养教育被收养人能力的证明
- 施工升降机的安装步骤
评论
0/150
提交评论