云南省彝良县民族中2024届数学高二第二学期期末考试模拟试题含解析_第1页
云南省彝良县民族中2024届数学高二第二学期期末考试模拟试题含解析_第2页
云南省彝良县民族中2024届数学高二第二学期期末考试模拟试题含解析_第3页
云南省彝良县民族中2024届数学高二第二学期期末考试模拟试题含解析_第4页
云南省彝良县民族中2024届数学高二第二学期期末考试模拟试题含解析_第5页
已阅读5页,还剩14页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

云南省彝良县民族中2024届数学高二第二学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.以下四个命题中,真命题的是()A.B.“对任意的”的否定是“存在”C.,函数都不是偶函数D.中,“”是“”的充要条件2.已知回归直线方程中斜率的估计值为,样本点的中心,则回归直线方程为()A. B.C. D.3.曲线的图像()A.关于轴对称B.关于原点对称,但不关于直线对称C.关于轴对称D.关于直线对称,关于直线对称4.已知抛物线,过其焦点的直线交抛物线于两点,若,则的面积(为坐标原点)为()A. B. C. D.5.已知,,则的最小值为()A. B. C. D.6.“纹样”是中国艺术宝库的瑰宝,“火纹”是常见的一种传统纹样.为了测算某火纹纹样(如图阴影部分所示)的面积,作一个边长为5的正方形将其包含在内,并向该正方形内随机投掷1000个点,己知恰有400个点落在阴影部分,据此可估计阴影部分的面积是A.2 B.3 C.10 D.157.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A. B.C. D.8.若,满足条件,则的最小值为()A. B. C. D.9.将函数的图象向右平移个单位长度得到图象,则函数的解析式是()A. B.C. D.10.若不等式2xlnx≥-x2+ax-3对x∈(0,+∞)恒成立,则实数a的取值范围是()A.(-∞,0) B.(-∞,4] C.(0,+∞) D.[4,+∞)11.已知的展开式中的系数为5,则()A.4 B.3 C.2 D.-112.已知点,则点轨迹方程是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数是定义在上的周期为的奇函数,时,,则_____.14.若函数存在单调递增区间,则的取值范围是___.15.某个游戏中,一个珠子按如图所示的通道,由上至下的滑下,从最下面的六个出口出来,规定猜中者为胜,如果你在该游戏中,猜得珠子从出口3出来,那么你取胜的概率为_______.16.已知集合,且,则实数的取值范围是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知抛物线的焦点为,直线与轴相交于点,与曲线相交于点,且(1)求抛物线的方程;(2)过抛物线的焦点的直线交抛物线于两点,过分别作抛物线的切线,两切线交于点,求证点的纵坐标为定值.18.(12分)已知椭圆左右焦点分别为,,若椭圆上的点到,的距离之和为,求椭圆的方程和焦点的坐标;若、是关于对称的两点,是上任意一点,直线,的斜率都存在,记为,,求证:与之积为定值.19.(12分)设为虚数单位,为正整数,(1)证明:;(2),利用(1)的结论计算.20.(12分)从1、2、3、4、5五个数字中任意取出无重复的3个数字.(I)可以组成多少个三位数?(II)可以组成多少个比300大的偶数?(III)从所组成的三位数中任取一个,求该数字是大于300的奇数的概率.21.(12分)已知关于的不等式.(1)当时,解不等式;(2)如果不等式的解集为空集,求实数的取值范围.22.(10分)(12分)甲乙两人独立解某一道数学题,已知该题被甲独立解出的概率为0.6,被甲或乙解出的概率为0.92,(1)求该题被乙独立解出的概率;(2)求解出该题的人数的数学期望和方差

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

解:A.若sinx=tanx,则sinx=tanx,∵x∈(0,π),∴sinx≠0,则1,即cosx=1,∵x∈(0,π),∴cosx=1不成立,故∃x∈(0,π),使sinx=tanx错误,故A错误,B.“对任意的x∈R,x2+x+1>0”的否定是“存在x0∈R,x02+x0+1≤0”,故B错误,C.当θ时,f(x)=sin(2x+θ)=sin(2x)=cos2x为偶函数,故C错误,D.在△ABC中,C,则A+B,则由sinA+sinB=sin(B)+sin(A)=cosB+cosA,则必要性成立;∵sinA+sinB=cosA+cosB,∴sinA﹣cosA=cosB﹣sinB,两边平方得sin2A﹣2sinAcosA+cos2A=sin2B﹣2sinBcosB+cos2B,∴1﹣2sinAcosA=1﹣2sinBcosB,∴sin2A=sin2B,则2A=2B或2A=π﹣2B,即A=B或A+B,当A=B时,sinA+sinB=cosA+cosB等价为2sinA=2cosA,∴tanA=1,即A=B,此时C,综上恒有C,即充分性成立,综上△ABC中,“sinA+sinB=cosA+cosB”是“C”的充要条件,故D正确,故选D.考点:全称命题的否定,充要条件等2、A【解题分析】

由题意得在线性回归方程中,然后根据回归方程过样本点的中心得到的值,进而可得所求方程.【题目详解】设线性回归方程中,由题意得,∴.又回归直线过样本点的中心,∴,∴,∴回归直线方程为.故选A.【题目点拨】本题考查线性回归方程的求法,其中回归直线经过样本点的中心时解题的关键,利用这一性质可求回归方程中的参数,也可求样本数据中的未知参数,属于基础题.3、D【解题分析】

构造二元函数,分别考虑与、、、、的关系,即可判断出相应的对称情况.【题目详解】A.,所以不关于轴对称;B.,,所以关于原点对称,也关于直线对称;C.,所以不关于轴对称;D.,所以关于直线对称,同时也关于直线对称.故选:D.【题目点拨】本题考查曲线与方程的综合应用,难度一般.若曲线关于轴对称,则将曲线中的换成,此时曲线的方程不变;若曲线关于轴对称,则将曲线中的换成,此时曲线的方程不变;若曲线关于对称,则将曲线中的换成、换成,此时曲线的方程不变;若曲线关于原点对称,则将曲线中的换成、换成,此时曲线的方程不变.4、B【解题分析】

首先过作,过作(为准线),,易得,.根据直线:与抛物线联立得到,根据焦点弦性质得到,结合已知即可得到,再计算即可.【题目详解】如图所示:过作,过作(为准线),.因为,设,则,.所以.在中,,所以.则.,直线为.,.所以,.在中,.所以.故选:B【题目点拨】本题主要考查抛物线的几何性质,同时考查焦点弦的性质,属于中档题.5、D【解题分析】

首先可换元,,通过再利用基本不等式即可得到答案.【题目详解】由题意,可令,,则,,于是,而,,故的最小值为,故答案为D.【题目点拨】本题主要考查基本不等式的综合应用,意在考查学生的转化能力,计算能力,难度中等.6、C【解题分析】

根据古典概型概率公式以及几何概型概率公式分别计算概率,解方程可得结果.【题目详解】设阴影部分的面积是s,由题意得4001000=【题目点拨】(1)当试验的结果构成的区域为长度、面积、体积等时,应考虑使用几何概型求解.(2)利用几何概型求概率时,关键是试验的全部结果构成的区域和事件发生的区域的寻找,有时需要设出变量,在坐标系中表示所需要的区域.7、A【解题分析】

利用线面平行判定定理可知B、C、D均不满足题意,从而可得答案.【题目详解】对于B项,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ,同理可证,C,D项中均有AB∥平面MNQ.故选:A.【题目点拨】本题考查空间中线面平行的判定定理,利用三角形中位线定理是解决本题的关键,属于中档题.8、A【解题分析】作出约束条件对应的平面区域(阴影部分),由z=2x﹣y,得y=2x﹣z,平移直线y=2x﹣z,由图象可知当直线y=2x﹣z,经过点A时,直线y=2x﹣z的截距最大,此时z最小.由解得A(0,2).此时z的最大值为z=2×0﹣2=﹣2,故选A.点睛:利用线性规划求最值的步骤:(1)在平面直角坐标系内作出可行域.(2)考虑目标函数的几何意义,将目标函数进行变形.常见的类型有截距型(型)、斜率型(型)和距离型(型).(3)确定最优解:根据目标函数的类型,并结合可行域确定最优解.(4)求最值:将最优解代入目标函数即可求出最大值或最小值.9、C【解题分析】

由题意利用三角函数的图象变换原则,即可得出结论.【题目详解】由题意,将函数的图象向右平移个单位长度,可得.故选C.【题目点拨】本题主要考查三角函数的图像变换,熟记图像变换原则即可,属于常考题型.10、B【解题分析】

分析:由已知条件推导出a≤x+2lnx+3x,x>0,令y=x+2lnx+3【题目详解】详解:由题意2xlnx≥-x2所以a≤x+2lnx+3x设y=x+2lnx+3由y'=0,得当x∈(0,1)时,y'<0,当x∈(1,+∞)时,所以x=1时,ymin=1+0+3=4,所以即实数a的取值范围是(-∞,4].点睛:利用导数研究不等式恒成立或解不等式问题,通常首先要构造函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造函数,直接把问题转化为函数的最值问题.11、D【解题分析】

将化简为:分别计算的系数,相加为5解得.【题目详解】中的系数为:的系数为:的系数为:故答案选D【题目点拨】本题考查了二项式定理的计算,分成两种情况简化了计算.12、A【解题分析】由双曲线的定义可知:点位于以为焦点的双曲线的左支上,且,故其轨迹方程为,应选答案A。二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】

根据题意,由函数的奇偶性与周期性分析可得,结合解析式求出的值,又因为,即可求得答案.【题目详解】根据题意,函数是定义在上的周期为的奇函数,则,函数是定义在上的奇函数又由,时,则,则故答案为:【题目点拨】本题考查通过奇函数性质和周期函数性质求值,解题关键是通过赋值法求特定的函数值和利用周期性求函数的值.14、【解题分析】

将题意转化为:,使得,利用参变量分离得到,转化为,结合导数求解即可。【题目详解】,其中,则。由于函数存在单调递增区间,则,使得,即,,构造函数,则。,令,得。当时,;当时,。所以,函数在处取得极小值,亦即最小值,则,所以,,故答案为:。【题目点拨】本题考查函数的单调性与导数,一般来讲,函数的单调性可以有如下的转化:(1)函数在区间上单调递增,;(2)函数在区间上单调递减,;(3)函数在区间上存在单调递增区间,;(4)函数在区间上存在单调递减区间,;(5)函数在区间上不单调函数在区间内存在极值点。15、【解题分析】

从顶点到3总共有5个岔口,共有10种走法,每一岔口走法的概率都是,二项分布的概率计算公式,即可求解.【题目详解】由题意,从顶点到3的路线图单独画出来,如图所示,可得从顶点到3总共有种走法,其中每一岔口走法的概率都是,所以珠子从出口3出来的概率为.【题目点拨】本题主要考查了二项分布的一个模型,其中解答中认真审题,合理利用二项分布的概率计算公式求解是解答的关键,着重考查了分析问题和解答问题的能力,属于基础题.16、【解题分析】分析:求出,由,列出不等式组能求出结果.详解:根据题意可得,,由可得即答案为.点睛:本题考查实数的取值范围的求法,是基础题,解题时要认真审题,注意不等式性质的合理运用.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析【解题分析】

(1)根据抛物线定义得,再根据点N坐标列方程,解得结果,(2)利用导数求切线斜率,再根据切线方程解得A点纵坐标,最后利用直线与方程联立方程组,借助韦达定理化简的纵坐标.【题目详解】解:(1)由已知抛物线的焦点,由,得,即因为点,所以,所以抛物线方程:(2)抛物线的焦点为设过抛物线的焦点的直线为.设直线与抛物线的交点分别为,由消去得:,根据韦达定理得抛物线,即二次函数,对函数求导数,得,所以抛物线在点处的切线斜率为可得切线方程为,化简得,同理,得到抛物线在点处切线方程为,两方程消去,得两切线交点纵坐标满足,,,即点的纵坐标是定值.【题目点拨】本题考查抛物线方程、抛物线切线方程以后利用韦达定理求值,考查综合分析求解能力,属中档题.18、,焦点,;证明见解析.【解题分析】

先根据点到到,的距离之和求得,再把点代入椭圆方程求得,则可得,进而求得椭圆的方程和焦点坐标;设点的坐标为,根据点的对称性求得的坐标,代入椭圆方程设出点的坐标,利用斜率公式分别表示出和的斜率,求得二者乘积的表达式,把式子代入结果为常数,原式得证.【题目详解】解:椭圆的焦点在轴上,由椭圆上点到到,的距离之和为,得,即.点在椭圆上,,得,则.椭圆的方程为,焦点为,.设点,则点,其中.设点,由,,可得,将和代入,得.故与之积为定值.【题目点拨】本题主要考查椭圆得标准方程与性质,直线的斜率求法,属于中档题.19、(1)证明见解析.(2).【解题分析】分析:(1)利用数学归纳法先证明,先证明当时成立,假设当时,命题成立,只需证明当时,命题也成立,证明过程注意三角函数和差公式的应用;(2)由(1)结论得,结合诱导公式与特殊角的三角函数可得结果.详解:(1)1°当时,左边,右边,所以命题成立2°假设当时,命题成立,即,则当时,所以,当时,命题也成立综上所述,(为正整数)成立(2)由(1)结论得点睛:本题主要考查复数的运算、诱导公式、特殊角的三角函数、归纳推理的应用以及数学归纳法证明,属于中档题.利用数学归纳法证明结论的步骤是:(1)验证时结论成立;(2)假设时结论正确,证明时结论正确(证明过程一定要用假设结论);(3)得出结论.20、(1).(2)比三百大的数字有15个.(3).【解题分析】分析:(1)根据乘法计数原理可知可组成个个;(2)第一类:以2结尾百位有3种选择,十位有3种选择,则有9个,第二类:以4结尾,百位有2种选择,十位有3种选择,则共有6个;(3)比300大的数字,百位上有3种选择,十位上有4种选择,个位上有3种选择,则共有36个数字,则奇数共有21个,根据古典概型的计算公式得到结果即可.详解:(1)百位数字有5种选择,十位数字有4种选择,各位数字有3种选择,根据乘法计数原理可知可组成个三位数。(2)各位数字上有两类:第一类:以2结尾百位有3种选择,十位有3种选择。则有9个数字。第二类:以4结尾,百位有2种选择,十位有3种选择,则共有6个数字。则比三百大的数字有15个(3)比300大的数字,百位上有3种选择,十位上有4种选择,个位上有3种选择,则共有36个数字,则奇数共有21个,则该数字是大于300的奇数的概率是.点睛:解答排列、组合问题的角度:解答排列、组合应用题要从“分析”、“分辨”、“分类”、“分步”的角度入手.(1)“分析”就是找出题目的条件、结论,哪些

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论