




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届内蒙古通辽市科左后旗甘旗卡第二中学数学高二第二学期期末考试模拟试题注意事项:1.答卷前,考生务必将自己的姓名、准考证号、考场号和座位号填写在试题卷和答题卡上。用2B铅笔将试卷类型(B)填涂在答题卡相应位置上。将条形码粘贴在答题卡右上角"条形码粘贴处"。2.作答选择题时,选出每小题答案后,用2B铅笔把答题卡上对应题目选项的答案信息点涂黑;如需改动,用橡皮擦干净后,再选涂其他答案。答案不能答在试题卷上。3.非选择题必须用黑色字迹的钢笔或签字笔作答,答案必须写在答题卡各题目指定区域内相应位置上;如需改动,先划掉原来的答案,然后再写上新答案;不准使用铅笔和涂改液。不按以上要求作答无效。4.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知命题“,使得”是真命题,则实数的取值范围是()A. B. C. D.2.已知函数在区间上的图像是连续不断的一条曲线,命题:总存在,有;命题:若函数在区间上有,则是的()A.充要条件 B.充分不必要条件 C.必要不充分条件 D.既不充分也不必要3.若函数的图象与的图象都关于直线对称,则与的值分别为()A. B. C. D.4.一根细金属丝下端挂着一个半径为1cm的金属球,将它浸没底面半径为2cm的圆柱形容器内的水中,现将金属丝向上提升,当金属球被拉出水面时,容器内的水面下降了()A.cm B.cm C.cm D.cm5.下面是高考第一批录取的一份志愿表:志愿学校专业第一志愿1第1专业第2专业第3专业第二志愿2第1专业第2专业第3专业现有5所重点院校,每所院校有3个专业是你较为满意的选择,如果表格填满且规定学校没有重复,同一学校的专业也没有重复;你将有不同的填写方法的种数是()A. B. C. D.6.已知随机变量Z服从正态分布N(0,),若P(Z>2)=0.023,则P(-2≤Z≤2)=A.0.477 B.0.625 C.0.954 D.0.9777.已知函数是定义在上的奇函数,对任意的都有,当时,则()A. B. C. D.8.在△ABC中,,,,则角B的大小为()A. B. C. D.或9.对于函数,“的图象关于轴对称”是“=是奇函数”的()A.充分而不必要条件 B.必要而不充分条件C.充要条件 D.既不充分也不必要10.若函数在上单调递增,则的取值范围是()A. B. C. D.11.学号分别为1,2,3,4的4位同学排成一排,若学号相邻的同学不相邻,则不同的排法种数为()A.2 B.4 C.6 D.812.将两枚质地均匀的骰子各掷一次,设事件{两个点数互不相同},{出现一个5点},则()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.已知直线:,抛物线:图像上的一动点到直线与到轴距离之和的最小值为________.14.已知函数,给出以下结论:①曲线在点处的切线方程为;②在曲线上任一点处的切线中有且只有两条与轴平行;③若方程恰有一个实数根,则;④若方程恰有两个不同实数根,则或.其中所有正确结论的序号为__________.15.现有10件产品,其中6件一等品,4件二等品,从中随机选出3件产品,恰有1件一等品的概率为________.16.已知在区间[2,+∞)上为减函数,则实数a的取值范围是______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某企业为了检查甲、乙两条自动包装流水线的生产情况,随机在这两条流水线上各抽取件产品作为样本称出它们的质量(单位:毫克),质量值落在的产品为合格品,否则为不合格品。如表是甲流水线样本频数分布表,如图是乙流水线样本的频率分布直方图。产品质量/毫克频数(1)根据乙流水线样本的频率分布直方图,求乙流水线样本质量的中位数(结果保留整数);(2)由以上统计数据完成列联表,能否在犯错误的概率不超过的前提下认为产品包装是否合格与两条自动包装流水线的选择有关?甲流水线乙流水线总计合格品不合格品总计下列临界值表仅供参考:参考公式:,其中.18.(12分)某学习小组在研究性学习中,对昼夜温差大小与绿豆种子一天内出芽数之间的关系进行研究该小组在4月份记录了1日至6日每天昼夜最高、最低温度(如图1),以及浸泡的100颗绿豆种子当天内的出芽数(如图2)根据上述数据作出散点图,可知绿豆种子出芽数(颗)和温差具有线性相关关系。(1)求绿豆种子出芽数(颗)关于温差的回归方程;(2)假如4月1日至7日的日温差的平均值为11℃,估计4月7日浸泡的10000颗绿豆种子一天内的出芽数。附:19.(12分)已知命题:函数对任意均有;命题在区间上恒成立.(1)如果命题为真命题,求实数的值或取值范围;(2)命题“”为真命题,“”为假命题,求实数的取值范围.20.(12分)我们称点到图形上任意一点距离的最小值为点到图形的距离,记作(1)求点到抛物线的距离;(2)设是长为2的线段,求点集所表示图形的面积;(3)试探究:平面内,动点到定圆的距离与到定点的距离相等的点的轨迹.21.(12分)如图,已知三棱柱的侧棱与底面垂直,,分别是的中点.(1)求异面直线与所成角的余弦值;(2)求二面角的余弦值.22.(10分)某学校1800名学生在一次百米测试中,成绩全部介于13秒与18秒之间,抽取其中50名学生组成一个样本,将测试结果按如下方式分成五组:第一组,第二组……,第五组,如图是按上述分组方法得到的频率分布直方图.(1)请估计学校1800名学生中,成绩属于第四组的人数;(2)若成绩小于15秒认为良好,求该样本中在这次百米测试中成绩良好的人数;(3)请根据频率分布直方图,求样本数据的众数、平均数.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
利用二次函数与二次不等式的关系,可得函数的判别式,从而得到.【题目详解】由题意知,二次函数的图象恒在轴上方,所以,解得:,故选C.【题目点拨】本题考查利用全称命题为真命题,求参数的取值范围,注意利用函数思想求解不等式.2、C【解题分析】
利用充分、必要条件的定义及零点存在性定理即可作出判断.【题目详解】命题推不出命题q,所以充分性不具备;比如:,区间为,满足命题p,但,根据零点存在性定理可知,命题能推出命题p,所以必要性具备;故选:C【题目点拨】本题考查充分必要条件,考查零点存在性定理,属于基础题.3、D【解题分析】分析:由题意得,结合即可求出,同理可得的值.详解:函数的图象与的图象都关于直线对称,和()解得和,和时,;时,.故选:D.点睛:本题主要考查了三角函数的性质应用,属基础题.4、D【解题分析】
利用等体积法求水面下降高度。【题目详解】球的体积等于水下降的体积即,.答案:D.【题目点拨】利用等体积法求水面下降高度。5、D【解题分析】
先排学校,再排专业,根据分步计数原理,即可得出答案。【题目详解】由题意知本题是一个分步计数问题首先从5所重点院校选出两所的排列:种3个专业的全排列:种根据分步计数原理共有种故选D【题目点拨】本题考查排列组合的实际应用,考查分步计数原理,解题的关键在于读懂题意,属于基础题。6、C【解题分析】因为随机变量服从正态分布,所以正态曲线关于直线对称,又,所以,所以0.954,故选C.【命题意图】本题考查正态分布的基础知识,掌握其基础知识是解答好本题的关键.7、C【解题分析】
根据得出周期,通过周期和奇函数把化在上,再通过周期和奇函数得.【题目详解】由,所以函数的周期因为是定义在上的奇函数,所以所以因为当时,,所以所以.选择C【题目点拨】本题主要考查了函数的奇偶性质以及周期.若为奇函数,则满足:1、,2、定义域包含0一定有.若函数满足,则函数周期为.属于基础题.8、A【解题分析】
首先根据三角形内角和为,即可算出角的正弦、余弦值,再根据正弦定理即可算出角B【题目详解】在△ABC中有,所以,所以,又因为,所以,所以,因为,,所以由正弦定理得,因为,所以。所以选择A【题目点拨】本题主要考查了解三角形的问题,在解决此类问题时常用到:1、三角形的内角和为。2、正弦定理。3、余弦定理等。属于中等题。9、B【解题分析】
由奇函数,偶函数的定义,容易得选项B正确.10、C【解题分析】试题分析:对恒成立,故,即恒成立,即对恒成立,构造,开口向下的二次函数的最小值的可能值为端点值,故只需保证,解得.故选C.【考点】三角变换及导数的应用【名师点睛】本题把导数与三角函数结合在一起进行考查,有所创新,求解的关键是把函数单调性转化为不等式恒成立,再进一步转化为二次函数在闭区间上的最值问题,注意与三角函数值域或最值有关的问题,即注意正、余弦函数的有界性.11、A【解题分析】
先排1,2,再将3、4插空,用列举法,即可得出结果.【题目详解】先排好1、2,数字3、4插空,排除相邻学号,只有2种排法:3142、1.故选A【题目点拨】本题主要考查计数原理,熟记概念即可,属于基础题型.12、A【解题分析】由题意事件A={两个点数都不相同},包含的基本事件数是36−6=30,事件B:出现一个5点,有10种,∴,本题选择A选项.点睛:条件概率的计算方法:(1)利用定义,求P(A)和P(AB),然后利用公式进行计算;(2)借助古典概型概率公式,先求事件A包含的基本事件数n(A),再求事件A与事件B的交事件中包含的基本事件数n(AB),然后求概率值.二、填空题:本题共4小题,每小题5分,共20分。13、1【解题分析】
首先根据抛物线的性质,可将抛物线上的点到直线和轴的距离和转化为抛物线上的点到直线的距离和到焦点的距离和减1,再根据数形结合求距离和的最小值.【题目详解】设抛物线上的点到直线的距离为,到准线的距离为,到轴的距离为,抛物线上的点到准线的距离和到焦点的距离相等,,,如图所示:的最小值就是焦点到直线的距离,焦点到直线的距离,所以有:的最小值是1,故答案为:1【题目点拨】本题考查抛物线的定义和抛物线的几何性质,意在考查转化与化归,关键是抛物线定义域的转化,属于中档题型.14、②④【解题分析】分析:对函数进行求导,通过导数研究函数的性质从而得到答案.详解:,①则曲线在点处的切线方程为即,故①不正确;②令或,即在曲线上任一点处的切线中有且只有两条与轴平行;正确;③由②知函数在上单调递减,在上单调递增,当函数的极小值极大值故若方程恰有一个实数根,则或,③不正确;④若方程恰有两个不同实数根,则或.正确点睛:本题考查导数的应用以及数形结合思想,是一道中档题.15、【解题分析】
利用古典概型的概率计算公式计算即可.【题目详解】从10件产品中任取3件共有种不同取法,其中恰有1件一等品共有种不同取法,由古典概型的概率计算公式知,从中随机选出3件产品,恰有1件一等品的概率为.故答案为:【题目点拨】本题考查古典概型的概率计算,考查学生的运算能力,是一道基础题.16、【解题分析】
令,则由题意可得函数在区间上为增函数且,故有,由此解得实数的取值范围.【题目详解】令,则由函数,在区间上为减函数,可得函数在区间上为增函数且,故有,解得,故答案为.【题目点拨】本题主要考查复合函数的单调性,二次函数的性质,体现了转化的数学思想,属于中档题;求复合函数的单调区间的步骤:(1)确定定义域;(2)将复合函数分解成两个基本初等函数;(3)分别确定两基本初等函数的单调性;(4)按“同增异减”的原则,确定原函数的单调区间.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)210;(2)详见解析.【解题分析】
(1)先判断中位数在第四组,再根据比例关系得到计算得到答案.(2)完善列联表,计算,与临界值表作比较得到答案.【题目详解】解:(1)因为前三组的频率之和前四组的频率之和所以中位数在第四组,设为由,解得(2)由乙流水线样本的频率分布直方图可知,合格品的个数为,所以,列联表是:甲流水线乙流水线总计合格品不合格品总计所以的观测值故在犯错误的概率不超过的前提下,不能认为产品的包装是否合格与两条自动包装流水线的选择有关.【题目点拨】本题考查了中位数的计算,独立性检验,意在考查学生的计算能力和解决问题的能力.18、(1);(2)5125颗【解题分析】
(1)列出日到日温差与出芽数(颗)之间的表格,计算出、,将数据代入公式计算出和的值,即可得出关于的回归方程;(2)先求出日的温差,再代入回归方程计算出日颗绿豆种子的发芽数,得出该日绿豆种子的发芽率,即可计算出颗绿豆种子的发芽数。【题目详解】(1)依照最高(低)温度折线图和出芽数条形图可得如下数据表:日期日日日日日日温差出芽数故,,,,所以,,则,所以,绿豆种子出芽数(颗)关于温差的回归方程为;(2)因为月日至日温差的平均值为,所以月日的温差,所以,,所以,月日浸泡的颗绿豆种子一天内的出芽数约为颗。【题目点拨】本题考查回归直线方程的求解,解这类问题的关键在于理解最小二乘法公式,并代入相关数据进行计算,考查运算求解能力,属于中等题。19、(1)(2)【解题分析】
(1)根据为真命题先判断出的单调性,然后利用分析的取值或取值范围;(2)先分别求解出为真时的取值范围,然后根据含逻辑联结词的复合命题的真假判断出的真假,从而求解出的取值范围.【题目详解】(1)在上单调递增则对恒成立∴;(2)在区间上恒成立,即在区间上恒成立,命题为真命题:即,所以,由命题“”为真命题,“”为假命题知一真一假若真假,若假真,则综上所述,.【题目点拨】本题考查利用导数研究函数的单调性以及根据含逻辑联结词的复合命题真假求解参数范围,其中涉及到用分离参数法解决恒成立问题,属于综合型问题,难度一般.(1)注意定义法判断函数单调性的转换:在定义域内单调递增,在定义域内单调递减;(2)根据含逻辑联结词的复合命题的真假求解参数范围时,注意先判断各命题的真假.20、(1)(2)(3)见解析【解题分析】
(1)设A是抛物线上任意一点,先求出|PA|的函数表达式,再求函数的最小值得解;(2)由题意知集合所表示的图形是一个边长为2的正方形和两个半径是1的半圆,再求出面积;(3)将平面内到定圆的距离转化为到圆上动点的距离,再分点现圆的位置关系,结合圆锥曲线的定义即可解决.【题目详解】(1)设A是抛物线上任意一点,则,因为,所以当时,.点到抛物线的距离.(2)设线段的端点分别为,,以直线为轴,的中点为原点建立直角坐
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2025标准装修设计合同范本
- 《物业管理安全培训》课件
- 2025年版中外合资经营企业合同范本
- 2025年数控刃磨床项目合作计划书
- 2025年抗寄生虫病药项目合作计划书
- 2025年食品蒸发浓缩机械合作协议书
- 2025年钳型表项目合作计划书
- 防潮地面施工方案
- 产地直采核桃协议3篇
- 借款协议补签模板3篇
- 深信服超融合HCI技术白皮书-20230213
- 2025年陕西省土地工程建设集团有限责任公司招聘笔试参考题库附带答案详解
- 2024广西公务员【申论A卷、C卷+2023申论A卷】共3套真题及答案
- 《多样的中国民间美术》课件 2024-2025学年人美版(2024)初中美术七年级下册
- 人教版 七年级 下册 语文 第四单元《青春之光》课件
- 2024物业管理数字化升级服务合同
- 灌浆作业安全操作规程(3篇)
- 药品追回管理制度内容
- 二战时期的中国抗日战争
- 35kv变电站设备安装工程施工设计方案
- 煤炭清洁高效利用对策
评论
0/150
提交评论