




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届安徽省肥东中学数学高二下期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.集合,,若,则的值为().A. B. C. D.2.若圆关于直线:对称,则直线在轴上的截距为()A.-l B.l C.3 D.-33.若△ABC的内角A,B,C的对边分别为a,b,c,且,△ABC的面,则a=()A.1 B. C. D.4.某学校有男、女学生各500名.为了解男女学生在学习兴趣与业余爱好方面是否存在显著差异,拟从全体学生中抽取100名学生进行调查,则宜采用的抽样方法是()A.抽签法 B.随机数法 C.系统抽样法 D.分层抽样法5.从甲、乙等10个同学中挑选4名参加某项公益活动,要求甲、乙中至少有1人参加,则不同的挑选方法共有()(A)种(B)种(C)种(D)种6.已知函数,若,则实数的取值范围是()A. B.C. D.7.若执行如图所示的程序框图,输出的值为,则输入的值是()A. B. C. D.8.已知随机变量ξ的分布列为P(ξ=k)=,k=1,2,3,则D(3ξ+5)=()A.6 B.9C.3 D.49.阅读如图所示的程序框图,运行相应的程序,若输入的值为1,则输出的值为()A. B.2 C.0 D.无法判断10.已知函数的最大值为,最小值为,则等于()A.0 B.2 C.4 D.811.函数的递增区间为()A. B. C. D.12.为了解某地区的中小学生视力情况,拟从该地区的中小学生中抽取部分学生进行调查,事先已了解到该地区小学、初中、高中三个学段学生的视力情况有较大差异,而男女生视力情况差异不大,在下面的抽样方法中,最合理的抽样方法是()A.简单随机抽样 B.按性别分层抽样C.按学段分层抽样 D.系统抽样二、填空题:本题共4小题,每小题5分,共20分。13.展开式中的常数项为__________.14.现有个大人,个小孩站一排进行合影.若每个小孩旁边不能没有大人,则不同的合影方法有__________种.(用数字作答)15.高一、高二、高三三个年级共有学生1500人,其中高一共有学生600人,现用分层抽样的方法抽取30人作为样本,则应抽取高一学生数为_______.16.湖结冰时,一个球漂在其上,取出后(未弄破冰),冰面上留下了一个直径为24cm,深为8cm的空穴,则该球的半径为.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数(为自然对数的底数).(1)讨论函数的单调性;(2)当时,恒成立,求整数的最大值.18.(12分)在六条棱长分别为2、3、3、4、5、5的所有四面体中,最大的体积是多少?证明你的结论.19.(12分)设,其中,,与无关.(1)若,求的值;(2)试用关于的代数式表示:;(3)设,,试比较与的大小.20.(12分)如图,在四棱锥中,底面是边长为2的菱形,平面,,为的中点.(1)证明:;(2)求二面角的余弦值.21.(12分)已知函数.(1)当时,求函数在上的最大值和最小值;(2)当函数在上单调时,求的取值范围.22.(10分)有甲乙两个班级进行数学考试,按照大于等于85分为优秀,85分以下为非优秀统计成绩后,得到如下的列联表.优秀非优秀总计甲班10乙班30总计105已知在全部105人中随机抽取1人为优秀的概率为.(1)请完成上面的列联表;(2)根据列联表的数据,若按95%的可靠性要求,能否认为“成绩与班级有关系”?参考公式:K2=P(K2≥k0)0.100.050.0250.010k02.7063.8415.0246.635
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】因为,所以,选D.2、A【解题分析】
圆关于直线:对称,等价于圆心在直线:上,由此可解出.然后令,得,即为所求.【题目详解】因为圆关于直线:对称,所以圆心在直线:上,即,解得.所以直线,令,得.故直线在轴上的截距为.故选A.【题目点拨】本题考查了圆关于直线对称,属基础题.3、A【解题分析】
根据三角形面积公式可得,利用正余弦平方关系,即可求得正余弦值,由余弦定理可得.【题目详解】因为,,面积,所以.所以.所以,.所以.故选A.【题目点拨】本题考查正余弦定理,面积公式,基础题.4、D【解题分析】试题分析:由于样本中男生与女生在学习兴趣与业余爱好方面存在差异性,因此所采用的抽样方法是分层抽样法,故选D.考点:抽样方法.5、C【解题分析】∵从10个同学中挑选4名参加某项公益活动有种不同挑选方法;从甲、乙之外的8个同学中挑选4名参加某项公益活动有种不同挑选方法;∴甲、乙中至少有1人参加,则不同的挑选方法共有种不同挑选方法故选C;【考点】此题重点考察组合的意义和组合数公式;【突破】从参加“某项”切入,选中的无区别,从而为组合问题;由“至少”从反面排除易于解决;6、A【解题分析】
代入特殊值对选项进行验证排除,由此得出正确选项.【题目详解】若,符合题意,由此排除C,D两个选项.若,则不符合题意,排除B选项.故本小题选A.【题目点拨】本小题主要考查分段函数函数值比较大小,考查特殊值法解选择题,属于基础题.7、C【解题分析】
将所有的算法循环步骤列举出来,得出不满足条件,满足条件,可得出的取值范围,从而可得出正确的选项.【题目详解】,;不满足,执行第二次循环,,;不满足,执行第三次循环,,;不满足,执行第四次循环,,;不满足,执行第五次循环,,;满足,跳出循环体,输出的值为,所以,的取值范围是.因此,输入的的值为,故选C.【题目点拨】本题考查循环结构框图的条件的求法,解题时要将算法的每一步列举出来,结合算法循环求出输入值的取值范围,考查分析问题和推理能力,属于中等题.8、A【解题分析】
直接利用方差的性质求解即可.【题目详解】由题意得,,,故选A.【题目点拨】本题主要考查方差的性质与应用,意在考查对基本性质掌握的熟练程度,属于中档题.9、B【解题分析】
由条件结构,输入的x值小于0,执行y=﹣x,输出y,等于0,执行y=0,输出y,大于0,执行y=1x,输出y,由x=1>0,执行y=1x得解.【题目详解】因为输入的x值为1大于0,所以执行y=1x=1,输出1.故选:B.【题目点拨】本题考查了程序框图中的条件结构,条件结构的特点是,算法的流程根据条件是否成立有不同的流向,算法不循环执行.10、C【解题分析】
因为,所以是奇函数,则由奇函数的性质,又因为,,即,,故,即,应选答案C.11、D【解题分析】∵f(x)=lnx−4x+1定义域是{x|x>0}∵当f′(x)>0时,.本题选择D选项.点睛:(1)利用导数研究函数的单调性的关键在于准确判定导数的符号.关键是分离参数k,把所求问题转化为求函数的最小值问题.(2)若可导函数f(x)在指定的区间D上单调递增(减),求参数范围问题,可转化为f′(x)≥0(或f′(x)≤0)恒成立问题,从而构建不等式,要注意“=”是否可以取到.12、C【解题分析】试题分析:符合分层抽样法的定义,故选C.考点:分层抽样.二、填空题:本题共4小题,每小题5分,共20分。13、24【解题分析】分析:由题意,求得二项式的展开式的通项为,即可求解答案.详解:由题意,二项式的展开式的通项为,令,则.点睛:本题主要考查了二项式定理的应用,其中熟记二项展开式的通项公式是解答的关键,着重考查了推理与运算能力.14、【解题分析】分析:根据题意可得可以小孩为对象进行分类讨论:第一类:2个小孩在一起,第二类小孩都不相邻.分别计算求和即可得出结论。详解:根据题意可得可以小孩为对象进行分类讨论:第一类:2个小孩在一起:,第二类:小孩都不在一起:,故不同的合影方法有216+144=360种,故答案为360点睛:考查计数原理和排列组合的综合,对于此类题首先要把题意分析清楚,分清楚所讨论的类别,再根据讨论情况逐一求解即可,注意计算的准确性.15、12【解题分析】
由题得高一学生数为,计算即得解.【题目详解】由题得高一学生数为.故答案为:12【题目点拨】本题主要考查分层抽样,意在考查学生对该知识的理解掌握水平和分析推理能力.16、13cm【解题分析】
设球半径为R,则,解得,故答案为13.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)见解析;(2)的最大值为1.【解题分析】
(1)根据的不同范围,判断导函数的符号,从而得到的单调性;(2)方法一:构造新函数,通过讨论的范围,判断单调性,从而确定结果;方法二:利用分离变量法,把问题变为,求解函数最小值得到结果.【题目详解】(1)当时,在上递增;当时,令,解得:在上递减,在上递增;当时,在上递减(2)由题意得:即对于恒成立方法一、令,则当时,在上递增,且,符合题意;当时,时,单调递增则存在,使得,且在上递减,在上递增由得:又整数的最大值为另一方面,时,,,时成立方法二、原不等式等价于:恒成立令令,则在上递增,又,存在,使得且在上递减,在上递增又,又,整数的最大值为【题目点拨】本题主要考查导数在函数单调性中的应用,以及导数当中的恒成立问题.处理恒成立问题一方面可以构造新函数,通过研究新函数的单调性,求解出范围;另一方面也可以采用分离变量的方式,得到参数与新函数的大小关系,最终确定结果.18、;证明见解析【解题分析】
根据三角形两边之差小于第三边这个性质,按题设数据,所有一边是2的三角形其余两边只可能是(A)3,3;(B)5,5;(C)4,5;(D)3,4,从而题设四面体中,以棱长为2的棱为公共边的两个面的其余两边只可能是下列三种情形:(I)(A)与(B),(II)(A)与(C);(III)(B)与(C),于是问题转化为对棱长分别为(I)(II)(III)的四面体来计算体积的最大值(或估计).【题目详解】由三角形两边之差小于第三边这个性质,按题设数据,所有一边是2的三角形其余两边只可能是(A)3,3;(B)5,5;(C)4,5;(D)3,4,从而题设四面体中,以棱长为2为公共边的两个面的其余两边只可能是下列三种情形:(I)(A)与(B),(II)(A)与(C);(III)(B)与(C).对情形(I)(A)与(B),四边形沿AB折叠后使,则由得,即是四面体以为底面的高,∴体积为;对情形(II)(A)与(C)四边形沿AB折叠后使,有两种情形,它们体积相等,记为,∵,∴为钝角,与平面斜交,∴;对情形(III),(B)与(C),这样的四面体也有两个,体积也相等,记为,.∴最大体积为.【题目点拨】本题考查四面体的体积,解题关键是找到以棱长为2的棱为突破点,分析以它为边的两个三角形的边长可能有哪些情形,然后一一求出它们的体积(可估计体积大小),再比较.难度较大.19、(1);(2);(3).【解题分析】分析:(1)由,即可求出p;(2)当时,,两边同乘以,再等式两边对求导,最后令即可;(3)猜测:,利用数学归纳法证明.详解:(1)由题意知,所以.(2)当时,,两边同乘以得:,等式两边对求导,得:,令得:,即.(3),,猜测:,当时,,,,此时不等式成立;②假设时,不等式成立,即:,则时,所以当时,不等式也成立;根据①②可知,,均有.点睛:利用数学归纳法证明等式时应注意的问题(1)用数学归纳法证明等式其关键点在于弄清等式两边的构成规律,等式两边各有多少项,初始值n0;(2)由n=k到n=k+1时,除等式两边变化的项外还要充分利用n=k时的式子,即充分利用假设,正确写出归纳证明的步骤,从而使问题得以证明.20、(1)见解析;(2).【解题分析】
(1)证明,再证明平面,即可证明;(2)以为原点建立空间直角坐标系,再求平面以及平面的法向量,再求两个平面法向量夹角的余弦值,结合图像即可求得二面角的余弦值.【题目详解】(1)证明:连接,.因为四边形是菱形且,为的中点,所以.因为平面,所以,又,所以平面,则.因为,所以.(2)以为原点建立空间直角坐标系(其中为与的交点),如图所示,则,,,.设平面的法向量为,则,,即,令,得.设平面的法向量为,则,,即,令,得.所以,由图可知二面角为钝角,故二面角的余弦值为.【题目点拨】本题主要考查空间几何元素位置关系的证明,考查二面角的求法,意在考查学生对这些知识的理解掌握水平和空间想象转化分析推理能力.21、(1)函数在最大值是2,最小值是;(2)【解题分析】
(1)代入,求导分析函数的单调性与最值即可.(2)由题得或在区间上恒成立,求导后参变分离求最值即可.【题目详解】(1)时,.函数在区间仅有极大值点,故这个极大值点也是最大值点,故函数在最大值是,又,故,故函数在上的最小值为.故函数在最大值是2,最小值是(2),令,则,则函数在递减,在递增,由,,,故函数在的值域为.若在恒成立,即在恒成立,只要,若要在恒成立,即在恒成立,只要.即的取值范围是.【题目点拨】本题主要考查求导分析函数在区间内的最值问题以及根据函数的单调性求参数范围的问题.包括参变分离求函数最值
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 可穿戴设备互联互通制定合作合同
- 声乐录制项目策划计划
- 环保节能项目策划书格式范文
- 信息化系统完工保护措施
- 中考命题分析“那一刻我长大了”写作指导及范文
- 校园餐饮服务投标文件范文
- 二年级培优辅差活动安排计划
- 2025年护士执业资格考试题库(外科护理学专项)护理质量监控与管理试题
- 2025年养老护理员专业知识测试卷-中级护理理论考核试题
- 2025年辅导员考试题库-校园文化建设案例研究及实践应用试题
- 自驾房车露营地管理制度
- 2025至2030年中国油页岩行业市场竞争格局及发展前景研判报告
- 2025至2030中国工业软件行业项目调研及市场前景预测评估报告
- 心肺复苏的试题及答案
- 暑假的一次冒险经历记事作文4篇范文
- 妇科专业疾病临床诊疗规范2025年版
- 贷款渠道签约协议书
- 2025芜湖事业单位笔试真题
- 家人吵架和解协议书
- 广西壮族自治区南宁市青秀区第二中学2025年数学八下期末调研试题含解析
- 2025中国中式餐饮白皮书
评论
0/150
提交评论