2024届辽宁省朝阳市凌源市凌源三中数学高二第二学期期末检测模拟试题含解析_第1页
2024届辽宁省朝阳市凌源市凌源三中数学高二第二学期期末检测模拟试题含解析_第2页
2024届辽宁省朝阳市凌源市凌源三中数学高二第二学期期末检测模拟试题含解析_第3页
2024届辽宁省朝阳市凌源市凌源三中数学高二第二学期期末检测模拟试题含解析_第4页
2024届辽宁省朝阳市凌源市凌源三中数学高二第二学期期末检测模拟试题含解析_第5页
已阅读5页,还剩15页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届辽宁省朝阳市凌源市凌源三中数学高二第二学期期末检测模拟试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若曲线在处的切线,也是的切线,则()A. B.1 C.2 D.2.执行如图所示的程序框图,若,则输出的为()A. B. C. D.3.(2-x)(2x+1)6的展开式中x4的系数为()A. B.320 C.480 D.6404.设随机变量ξ~N(μ,σ2),函数f(x)=x2+4x+ξ没有零点的概率是0.5,则μ等于()A.1 B.4 C.2 D.不能确定5.已知变量,之间的一组数据如下表:13572345由散点图可知变量,具有线性相关,则与的回归直线必经过点()A. B. C. D.6.已知函数,若函数的图象与轴的交点个数不少于2个,则实数的取值范围是()A. B.C. D.7.“”是“方程表示双曲线”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件8.若实数满足不等式组,则的最大值为()A.8 B.10 C.7 D.99.阅读如图所示的程序框图,运行相应的程序,则输出S的值为()A.-10 B.6C.14 D.1810.随机变量的分布列为12340.20.30.4则()A.4.8 B.5 C.6 D.8.411.下图是某公司10个销售店某月销售某产品数量(单位:台)的茎叶图,则数据落在区间[22,30)内的概率为()A.0.2 B.0.4 C.0.5 D.0.612.已知函数,当时,在内的极值点的个数为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若圆锥的侧面积为,底面积为,则该圆锥的体积为____________.14.由抛物线y=x2,直线x=1,x=3和x轴所围成的图形的面积是______.15.用0到9这10个数字,组成没有重复数字且能被5整除的三位数的个数为__________.16.在如图三角形数阵中,从第3行开始,每一行除1以外,其它每一个数字是它上一行的左右两个数字之和.已知这个三角形数阵开头几行如图所示,若在此数阵中存在某一行,满足该行中有三个相邻的数字之比为,则这一行是第__________行(填行数).三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数,集合.(1)当时,解不等式;(2)若,且,求实数的取值范围;(3)当时,若函数的定义域为,求函数的值域.18.(12分)新高考方案的考试科目简称“”,“3”是指统考科目语数外,“1”指在首选科目“物理、历史”中任选1门,“2”指在再选科目“化学、生物、政治和地理”中任选2门组成每位同学的6门高考科目.假设学生在选科中,选修每门首选科目的机会均等,选择每门再选科目的机会相等.(Ⅰ)求某同学选修“物理、化学和生物”的概率;(Ⅱ)若选科完毕后的某次“会考”中,甲同学通过首选科目的概率是,通过每门再选科目的概率都是,且各门课程通过与否相互独立.用表示该同学所选的3门课程在这次“会考”中通过的门数,求随机变量的概率分布和数学期望.19.(12分)甲、乙两种不同规格的产品,其质量按测试指标分数进行划分,其中分数不小于82分的为合格品,否则为次品.现随机抽取两种产品各100件进行检测,其结果如下:测试指标分数甲产品81240328乙产品71840296(1)根据以上数据,完成下面的列联表,并判断是否有的有把握认为两种产品的质量有明显差异?甲产品乙产品合计合格品次品合计(2)已知生产1件甲产品,若为合格品,则可盈利40元,若为次品,则亏损5元;生产1件乙产品,若为合格品,则可盈利50元,若为次品,则亏损10元.记为生产1件甲产品和1件乙产品所得的总利润,求随机变量的分布列和数学期望(将产品的合格率作为抽检一件这种产品为合格品的概率).附:0.150.100.050.0250.0100.0050.0012.7022.7063.8415.0246.6357.87910.82820.(12分)从某地区随机抽测120名成年女子的血清总蛋白含量(单位:),由测量结果得如图频数分布表:(1)①仔细观察表中数据,算出该样本平均数______;②由表格可以认为,该地区成年女子的血清总蛋白含量Z服从正态分布.其中近似为样本平均数,近似为样本标准差s.经计算,该样本标准差.医学上,Z过高或过低都为异常,Z的正常值范围通常取关于对称的区间,且Z位于该区间的概率为,试用该样本估计该地区血清总蛋白正常值范围.120名成年女人的血清总蛋白含量的频数分布表分组频数f区间中点值x265130867536126982815711065257318252475180016771232107979078156718383合计1208856(2)结合(1)中的正常值范围,若该地区有5名成年女子检测血清总蛋白含量,测得数据分别为83.2,80,73,59.5,77,从中随机抽取2名女子,设血清总蛋白含量不在正常值范围的人数为X,求X的分布列和数学期望.附:若,则.21.(12分)已知函数.(1)求函数的单调区间;(2)求函数在区间上的最大值和最小值.22.(10分)如图,在四棱锥P-ABCD中,四边形ABCD是直角梯形,AB⊥AD,AB//CD,PC⊥底面ABCD,AB=2AD=2CD=4,PC=2a,E是PB的中点.(1)求证:平面EAC⊥平面PBC;(2)若a=2,求二面角P-AC-E的余弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

求出的导数,得切线的斜率,可得切线方程,再设与曲线相切的切点为(m,n),得的导数,由导数的几何意义求出切线的斜率,解方程可得m,n,进而得到b的值.【题目详解】函数的导数为y=ex,曲线在x=0处的切线斜率为k==1,则曲线在x=0处的切线方程为y﹣1=x;函数的导数为y=,设切点为(m,n),则=1,解得m=1,n=1,即有1=ln1+b,解得b=1.故选A.【题目点拨】本题主要考查导数的几何意义,求切线方程,属于基础题.2、B【解题分析】

执行程序框图,依次写出每次循环得到的的值,当时,不满足条件,退出循环,输出的值.【题目详解】执行如图所示的程序框图,有满足条件,有,;满足条件,有,;满足条件,有,;满足条件,有,;不满足条件,退出循环,输出的值为本题正确选项:【题目点拨】本题考查了程序框图和算法的应用问题,是对框图中的循环结构进行了考查,属于基础题.3、B【解题分析】,展开通项,所以时,;时,,所以的系数为,故选B.点睛:本题考查二项式定理.本题中,首先将式子展开得,再利用二项式的展开通项分别求得对应的系数,则得到问题所要求的的系数.4、B【解题分析】试题分析:由题中条件:“函数f(x)=x2+4x+ξ没有零点”可得ξ>4,结合正态分布的图象的对称性可得μ值.解:函数f(x)=x2+4x+ξ没有零点,即二次方程x2+4x+ξ=0无实根得ξ>4,∵函数f(x)=x2+4x+ξ没有零点的概率是0.5,∴P(ξ>4)=0.5,由正态曲线的对称性知μ=4,故选B.考点:正态分布曲线的特点及曲线所表示的意义.5、C【解题分析】

由表中数据求出平均数和即可得到结果.【题目详解】由表中数据知,,,则与的回归直线必经过点.故选:C.【题目点拨】本题主要考查回归分析的基本思想及应用,理解并掌握回归直线方程必经过样本中心点,属基础题.6、C【解题分析】分析:根据的图象与轴的交点个数不少于2个,可得函数的图象与的交点个数不少于2个,在同一坐标系中画出两个函数图象,结合图象即可得到m的取值范围.详解:的图象与轴的交点个数不少于2个,函数的图象与函数的图象的交点个数不少于2个,函数,时,函数为指数函数,过点,时,函数,为对称轴,开口向下的二次函数.,为过定点的一条直线.在同一坐标系中,画出两函数图象,如图所示.(1)当时,①当过点时,两函数图象有两个交点,将点代入直线方程,解得.②当与相切时,两函数图象有两个交点.联立,整理得则,解得,(舍)如图当,两函数图象的交点个数不少于2个.(2)当时,易得直线与函数必有一个交点如图当直线与相切时有另一个交点设切点为,,切线的斜率,切线方程为切线与直线重合,即点在切线上.,解得由图可知,当,两函数图象的交点个数不少于2个.综上,实数的取值范围是故选C.点睛:本题考查函数零点问题,考查数形结合思想、转化思想及分类讨论的思想,具有一定的难度.利用函数零点的情况,求参数值或取值范围的方法(1)利用零点存在的判定定理构建不等式求解(2)分离参数后转化为函数的值域(最值)问题求解(3)转化为两熟悉的函数图象的上、下关系问题,从而构建不等式求解.7、A【解题分析】

若方程表示双曲线,则有,再根据充分条件和必要条件的定义即可判断.【题目详解】因为方程表示双曲线等价于,所以“”,是“方程表示双曲线”的充分不必要条件,故选A.【题目点拨】本题考查充分条件与必要条件以及双曲线的性质,属于基础题.8、D【解题分析】

根据约束条件,作出可行域,将目标函数化为,结合图像,即可得出结果.【题目详解】由题意,作出不等式组表示的平面区域如下图所示,目标函数可化为,结合图像可得,当目标函数过点时取得最大值,由解得.此时.选D。【题目点拨】本题主要考查简单的线性规划问题,通常需要作出可行域,转化目标函数,结合图像求解,属于常考题型.9、B【解题分析】模拟法:输入;不成立;不成立成立输出,故选B.考点:本题主要考查程序框图与模拟计算的过程.10、B【解题分析】分析:先求出a,再求,再利用公式求.详解:由题得a=1-0.2-0.3-0.4=0.1.由题得.所以所以.故答案为:B.点睛:(1)本题主要考查概率的计算和随机变量的期望的计算,意在考查学生对这些基础知识的掌握水平和基本的运算能力.(2)若(a、b是常数),是随机变量,则也是随机变量,.11、B【解题分析】区间[22,31)内的数据共有4个,总的数据共有11个,所以频率为1.4,故选B.12、C【解题分析】

求导令导函数等于0,得出,将问题转化为函数,,,的交点问题,画出图象即可判断.【题目详解】令得出令函数,,,它们的图象如下图所示由图可知,函数,,,有两个不同的交点,则在内的极值点的个数为2个故选:C【题目点拨】本题主要考查了求函数零点或方程的根的个数,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】试题分析:因为,圆锥的侧面积为,底面积为,所以,解得,,所以,该圆锥的体积为.考点:圆锥的几何特征点评:简单题,圆锥之中,要弄清r,h,l之间的关系,熟练掌握面积、体积计算公式.14、【解题分析】

由题意,作出图形,确定定积分,即可求解所围成的图形的面积.【题目详解】解析:如图所示,S=x2dx=1=(33-13)=.【题目点拨】本题主要考查了定积分的应用,其中根据题设条件,作出图形,确定定积分求解是解答的关键,着重考查了推理与运算能力,以及数形结合思想的应用,属于基础题.15、136【解题分析】分析:由题意,末尾是0或1,分类讨论,即可得出结论.详解:由题意,末尾是0或1.

末尾是0时,没有重复数字且被1整除的三位数有,

末尾是1时,没有重复数字且被1整除的三位数有,

∴用0到9这10个数字,可以组成没有重复数字且被1整除的三位数有,即答案为136.点睛:本题考查计数原理的应用,考查学生的计算能力,比较基础.16、98【解题分析】

通过杨辉三角可知每一行由二项式系数构成,于是可得方程组,求出行数.【题目详解】三角形数阵中,每一行的数由二项式系数,组成.如多第行中有,,那么,解得,因此答案为98.【题目点拨】本题主要考查杨辉三角,二项式定理,意在考查学生数感的建立,计算能力及分析能力,难度中等.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)当时,的值域为;当时,的值域为;当时,的值域为.【解题分析】分析:(1)先根据一元二次方程解得ex>3,再解对数不等式得解集,(2)解一元二次不等式得集合A,再根据,得log2f(x)≥1在0≤x≤1上有解,利用变量分离法得a≥3ex-e2x在0≤x≤1上有解,即a≥[3ex-e2x]min.最后根据二次函数性质求最值得结果,(3)先转化为对勾函数,再根据拐点与定义区间位置关系,分类讨论,结合单调性确定函数值域.详解:(1)当a=-3时,由f(x)>1得ex-3e-x-1>1,所以e2x-2ex-3>0,即(ex-3)(ex+1)>0,所以ex>3,故x>ln3,所以不等式的解集为(ln3,+∞).(2)由x2-x≤0,得0≤x≤1,所以A={x|0≤x≤1}.因为A∩B≠,所以log2f(x)≥1在0≤x≤1上有解,即f(x)≥2在0≤x≤1上有解,即ex+ae-x-3≥0在0≤x≤1上有解,所以a≥3ex-e2x在0≤x≤1上有解,即a≥[3ex-e2x]min.由0≤x≤1得1≤ex≤e,所以3ex-e2x=-(ex-)2+∈[3e-e2,],所以a≥3e-e2.(3)设t=ex,由(2)知1≤t≤e,记g(t)=t+-1(1≤t≤e,a>1),则,t(1,)(,+∞)g′(t)-0+g(t)↘极小值↗①当≥e时,即a≥e2时,g(t)在1≤t≤e上递减,所以g(e)≤g(t)≤g(1),即.所以f(x)的值域为.②当1<<e时,即1<a<e2时,g(t)min=g()=2-1,g(t)max=max{g(1),g(e)}=max{a,}.1°若a,即e<a<e2时,g(t)max=g(1)=a;所以f(x)的值域为;2°若a,即1<a≤e时,g(t)max=g(e)=,所以f(x)的值域为.综上所述,当1<a≤e时,f(x)的值域为;当e<a<e2时,f(x)的值域为;当a≥e2时,f(x)的值域为.点睛:不等式有解是含参数的不等式存在性问题时,只要求存在满足条件的即可;不等式的解集为R是指不等式的恒成立,而不等式的解集的对立面(如的解集是空集,则恒成立))也是不等式的恒成立问题,此两类问题都可转化为最值问题,即恒成立⇔,恒成立⇔.18、(Ⅰ);(Ⅱ)详见解析.【解题分析】

(Ⅰ)显然各类别中,一共有种组合,而选修物理、化学和生物只有一种可能,于是通过古典概率公式即可得到答案;(Ⅱ)找出的所有可能取值有0,1,2,3,依次求得概率,从而得到分布列和数学期望.【题目详解】解:(Ⅰ)记“某同学选修物理、化学和生物”为事件,因为各类别中,学生选修每门课程的机会均等则,答:该同学选修物理、化学和生物的概率为.(Ⅱ)随机变量的所有可能取值有0,1,2,3.因为,,,,所以的分布列为0123所以数学期望.【题目点拨】本题主要考查分布列和数学期望的相关计算,意在考查学生处理实际问题的能力,对学生的分析能力和计算能力要求较高.19、(1)没有(2)的分布列见解析,【解题分析】试题分析:(1)由题意完成列联表,然后计算可得,则没有的有把握认为两种产品的质量有明显差异(2)X可能取值为90,45,30,-15,据此依据概率求得分布列,结合分布列可求得数学期望.试题解析:(1)列联表如下:甲产品乙产品合计合格品8075155次品202545合计100100200∴没有的有把握认为两种产品的质量有明显差异(2)依题意,生产一件甲,乙产品为合格品的概率分别为,随机变量可能取值为90,45,30,-15,904530-15的分布列为:∴20、(1)①73.8;②.(2)见解析,【解题分析】

(1)①直接由合计中的得均值;②根据所给数据解不等式即得;(2)5名成年女子中血清总蛋白含量异常的人数有2人,所以X的可能取值为0,1,2.这样可计算出各个概率,得分布列,再个分布列计算期望.【题目详解】(1)①.②,即.(2)依题有5名成年女子中血清总蛋白含量异常的人数有2人,所以X的可能取值为0,1,2.因为,,,所以随机变量X的分布列为:X012P【题目点拨】本题考查正态分布及其应用,超几何分布概率模型,考查抽象概括能力、推理论证能力、运算求解能力,考查化归与转化思想,体现综

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论