




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届贵州省铜仁市伟才学校高二数学第二学期期末检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.()A.2 B.1 C.0 D.2.某市一次高二年级数学统测,经抽样分析,成绩近似服从正态分布,且,则()A.0.2 B.0.3 C.0.4 D.0.53.设,则“”是“”的()A.充分不必要条件 B.必要条件C.充分条件 D.既不充分也不必要条件4.已知函数满足,且,当时,,则=A.−1 B.0C.1 D.25.若,都是实数,则“”是“”的()A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件6.若关于的线性回归方程是由表中提供的数据求出,那么表中的值为()345634A. B. C. D.7.如果点位于第三象限,那么角所在象限是()A.第一象限 B.第二象限 C.第三象限 D.第四象限8.观察两个变量(存在线性相关关系)得如下数据:则两变量间的线性回归方程为()A. B. C. D.9.若,则复数在复平面上对应的点在A.第一象限 B.第二象限 C.第三象限 D.第四象限10.若复数满足,则的值是()A. B. C. D.11.已知函数,若方程有三个实数根,且,则的取值范围为()A. B.C. D.12.设是定义域为的偶函数,且在单调递减,则()A.B.C.D.二、填空题:本题共4小题,每小题5分,共20分。13.已知函数,则的值为__________.14.若C9x=15.在极坐标系中,点(2,π6)到直线ρsinθ=2的距离等于16.在圆中:半径为的圆的内接矩形中,以正方形的面积最大,最大值为.类比到球中:半径为的球的内接长方体中,以正方体的体积最大,最大值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某工厂为提高生产效率,开展技术创新活动,提出了完成某项生产任务的两种新的生产方式.为比较两种生产方式的效率,选取40名工人,将他们随机分成两组,每组20人,第一组工人用第一种生产方式,第二组工人用第二种生产方式.根据工人完成生产任务的工作时间(单位:min)绘制了如下茎叶图:(1)根据茎叶图判断哪种生产方式的效率更高?并说明理由;(2)求40名工人完成生产任务所需时间的中位数,并将完成生产任务所需时间超过和不超过的工人数填入下面的列联表:超过不超过第一种生产方式第二种生产方式(3)根据(2)中的列联表,能否有99%的把握认为两种生产方式的效率有差异?附:,18.(12分)已知数列的前项和为,且.(1)求数列的通项公式;(2)若数列的前项和为,证明:.19.(12分)为了解某校学生参加社区服务的情况,采用按性别分层抽样的方法进行调查.已知该校共有学生960人,其中男生560人,从全校学生中抽取了容量为n的样本,得到一周参加社区服务的时间的统计数据如下表:超过1小时不超过1小时男208女12m(1)求m,n;(2)能否有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关?(3)以样本中学生参加社区服务时间超过1小时的频率作为该事件发生的概率,现从该校学生中随机调查6名学生,试估计6名学生中一周参加社区服务时间超过1小时的人数.附:0.0500.0100.001k3.8416.63510.82820.(12分)在如图所示的几何体中,,平面,,,,.(1)证明:平面;(2)求平面与平面所成二面角的正弦值.21.(12分)的内角所对的边分别是,已知.(1)求;(2)若的面积为,,,求,.22.(10分)已知函数.(1)求函数的最小值;(2)若恒成立,求实数的值;(3)设有两个极值点,求实数的取值范围,并证明.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】
用微积分基本定理计算.【题目详解】.故选:C.【题目点拨】本题考查微积分基本定理求定积分.解题时可求出原函数,再计算.2、A【解题分析】
根据正态分布的对称性求出P(X≥90),即可得到答案.【题目详解】∵X近似服从正态分布N(84,σ2),.∴,故选:A.【题目点拨】本题考查正态分布曲线的特点及曲线所表示的意义,抓住正态分布曲线的对称性即可解题,属于基础题.3、A【解题分析】
分析两个命题的真假即得,即命题和.【题目详解】为真,但时.所以命题为假.故应为充分不必要条件.故选:A.【题目点拨】本题考查充分必要条件判断,充分必要条件实质上是判断相应命题的真假:为真,则是的充分条件,是的必要条件.4、C【解题分析】
通过函数关系找到函数周期,利用周期得到函数值.【题目详解】由,得,所以.又,所以,所以函数是以4为周期的周期函数所以故选C【题目点拨】本题考查了函数的周期,利用函数关系找到函数周期是解题的关键.5、A【解题分析】分析:先证明充分性,两边同时平方即可,再证明必要性,取特值,从而判断出结果。详解:充分性:将两边平方可得:化简可得:则,故满足充分性必要性:,当时,,故不满足必要性条件则是的充分而不必要条件故选点睛:本题考查了充分条件与必要条件的判定,可以根据其定义进行判断,在必要性的判定时采用了取特值的方法,这里也要熟练不等式的运用6、C【解题分析】由表可得样本中心点的坐标为,根据线性回归方程的性质可得,解出,故选C.7、B【解题分析】
由二倍角的正弦公式以及已知条件得出和的符号,由此得出角所在的象限.【题目详解】由于点位于第三象限,则,得,因此,角为第二象限角,故选B.【题目点拨】本题考查角所在象限的判断,解题的关键要结合已知条件判断出角的三角函数值的符号,利用“一全二正弦,三切四余弦”的规律判断出角所在的象限,考查推理能力,属于中等题.8、B【解题分析】分析:根据表中数据,计算、,再由线性回归方程过样本中心点,排除A、C、D选项即可.详解:根据表中数据,得;=(﹣10﹣6.99﹣5.01﹣2.98+3.98+5+7.99+8.01)=0,=(﹣9﹣7﹣5﹣3+4.01+4.99+7+8)=0;∴两变量x、y间的线性回归方程过样本中心点(0,0),可以排除A、C、D选项,B选项符合题意.故选:B.点睛:本题考查了线性回归方程过样本中心点的应用问题,是基础题目.对于回归方程,一定要注意隐含条件,样本中心满足回归方程,再者计算精准,正确理解题意,应用回归方程对总体进行估计.9、D【解题分析】分析:利用二次函数的性质可判定复数的实部大于零,虚部小于零,从而可得结果.详解:因为,,所以复数在复平面上对应的点在第四象限,故选D.点睛:复数是高考中的必考知识,主要考查复数的概念及复数的运算.要注意对实部、虚部的理解,掌握纯虚数、共轭复数这些重要概念,复数的运算主要考查除法运算,通过分母实数化转化为复数的乘法,运算时特别要注意多项式相乘后的化简,防止简单问题出错,造成不必要的失分.10、C【解题分析】
先用复数除法进行化简,之后求共轭复数即可.【题目详解】因为故:故其共轭复数为:故选:C.【题目点拨】本题考查复数的除法运算,涉及共轭复数,属基础题.11、B【解题分析】
先将方程有三个实数根,转化为与的图象交点问题,得到的范围,再用表示,令,利用导数法求的取值范围即可.【题目详解】已知函数,其图象如图所示:因为方程有三个实数根,所以,令,得,令,所以,所以,令,所以,令,得,当时,,当时,,所以当时,取得极小值.又,所以的取值范围是:.即的取值范围为.故选:B【题目点拨】本题主要考查函数与方程,导数与函数的单调性、极值最值,还考查了数形结合的思想和运算求解的能力,属于难题.12、C【解题分析】
由已知函数为偶函数,把,转化为同一个单调区间上,再比较大小.【题目详解】是R的偶函数,.,又在(0,+∞)单调递减,∴,,故选C.【题目点拨】本题主要考查函数的奇偶性、单调性,解题关键在于利用中间量大小比较同一区间的取值.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】,,解得,故,故答案为.14、3或4【解题分析】
结合组合数公式结合性质进行求解即可.【题目详解】由组合数的公式和性质得x=2x﹣3,或x+2x﹣3=9,得x=3或x=4,经检验x=3或x=4都成立,故答案为:3或4.【题目点拨】本题主要考查组合数公式的计算,结合组合数的性质建立方程关系是解决本题的关键.15、1【解题分析】试题分析:在极坐标系中,点(2,π6)对应直角坐标系中坐标(3考点:极坐标化直角坐标16、【解题分析】分析:圆的内接矩形中,以正方形的面积最大,当边长等于时,类比球中内接长方体中,以正方体的体积最大,棱长为详解:圆的内接矩形中,以正方形的面积最大,当边长时,解得时,类比球中内接长方体中,以正方体的体积最大,当棱长,解得时,正方体的体积为点睛:类比推理,理会题意抓住题目内在结构相似的推导过程,不要仅模仿形式上的推导过程。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)第二种生产方式的效率更高.理由见解析(2)80(3)能【解题分析】
分析:(1)计算两种生产方式的平均时间即可.(2)计算出中位数,再由茎叶图数据完成列联表.(3)由公式计算出,再与6.635比较可得结果.详解:(1)第二种生产方式的效率更高.理由如下:(i)由茎叶图可知:用第一种生产方式的工人中,有75%的工人完成生产任务所需时间至少80分钟,用第二种生产方式的工人中,有75%的工人完成生产任务所需时间至多79分钟.因此第二种生产方式的效率更高.(ii)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间的中位数为85.5分钟,用第二种生产方式的工人完成生产任务所需时间的中位数为73.5分钟.因此第二种生产方式的效率更高.(iii)由茎叶图可知:用第一种生产方式的工人完成生产任务平均所需时间高于80分钟;用第二种生产方式的工人完成生产任务平均所需时间低于80分钟,因此第二种生产方式的效率更高.(iv)由茎叶图可知:用第一种生产方式的工人完成生产任务所需时间分布在茎8上的最多,关于茎8大致呈对称分布;用第二种生产方式的工人完成生产任务所需时间分布在茎7上的最多,关于茎7大致呈对称分布,又用两种生产方式的工人完成生产任务所需时间分布的区间相同,故可以认为用第二种生产方式完成生产任务所需的时间比用第一种生产方式完成生产任务所需的时间更少,因此第二种生产方式的效率更高.以上给出了4种理由,考生答出其中任意一种或其他合理理由均可得分.(2)由茎叶图知.列联表如下:超过不超过第一种生产方式155第二种生产方式515(3)由于,所以有99%的把握认为两种生产方式的效率有差异.点睛:本题主要考查了茎叶图和独立性检验,考察学生的计算能力和分析问题的能力,贴近生活.18、(1);(2)见解析【解题分析】
(1)根据前n项和与通项间的关系得到,,,两式做差即可得到数列,数列为常数列,,即;(2)根据第一问得到,裂项求和即可.【题目详解】(1)当时,,即,当时,①,②,得,即,所以,且,所以数列为常数列,,即.(2)由(1)得,所以,所以,.【题目点拨】这个题目考查的是数列通项公式的求法及数列求和的常用方法;数列通项的求法中有常见的已知和的关系,求表达式,一般是写出做差得通项,但是这种方法需要检验n=1时通项公式是否适用;数列求和常用法有:错位相减,裂项求和,分组求和等.19、(1),(2)没有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关(3)估计这6名学生中一周参加社区服务时间超过1小时的人数是4人【解题分析】
(1)根据分层抽样比例列方程求出n的值,再计算m的值;(2)根据题意完善2×2列联表,计算K2,对照临界值表得出结论;(3)计算参加社区服务时间超过1小时的频率,用频率估计概率,计算所求的频数即可.【题目详解】(1)根据分层抽样法,抽样比例为,∴n=48;∴m=48﹣20﹣8﹣12=8;(2)根据题意完善2×2列联表,如下;超过1小时不超过1小时合计男生20828女生12820合计321648计算K20.6857<3.841,所以没有95%的把握认为该校学生一周参加社区服务时间是否超过1小时与性别有关;(3)参加社区服务时间超过1小时的频率为,用频率估计概率,从该校学生中随机调査6名学生,估计这6名学生中一周参加社区服务时间超过1小时的人数为64(人).【题目点拨】本题考查了列联表与独立性检验的应用问题及用频率估计概率的应用问题,考查了运算能力,属于中档题.20、(1)证明见解析;(2).【解题分析】分析:(1)在中,由勾股定理可得.又平面,据此可得.利用线面垂直的判断定理可得平面.(2)(方法一)延长,相交于,连接,由题意可知二面角就是平面与平面所成二面角.取的中点为,则就是二面角的平面角.结合几何关系计算可得.(方法二)建立空间直角坐标系,计算可得平面的法向量.取平面的法向量为.利用空间向量计算可得.详解:(1)在中,.所以,所以为直角三角形,.又因为平面,所以.而,所以平面.(2)(方法一)如图延长,相交于,连接,则平面平面.二面角就是平面与平面所成二面角.因为,所以是的中位线.,这样是等边三角形.取的中点为,连接,因为平面.所以就是二面角的平面角.在,所以.(方法二)建立如图所示的空间直角坐标系,可得..设是平面的法向量,则令得.
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 承办会议方合同范本
- 涂料供销合同范本
- 林木订货合同范本
- 2025年碳化硅超细粉体合作协议书
- 2025年度全国办事处设立及运营管理合作协议
- 教育用地居间协议范本
- 2025年教育评估与督导个人述职报告范文
- 工厂车间水电安装施工合同
- 2025年度报废车辆回收与再制造服务合作协议
- 开放地球引擎(OGE)研究进展与应用
- 消防车辆与泵装备的配置与选用与更新的技术要求与管理办法
- 学校重大事项议事决策制度
- 英纳能特种防护材料珠海产研生态基地建设项目(一期)环境影响报告表
- 建筑与市政施工现场安全卫生与职业健康通用规范培训课件
- 中小学音乐课堂体验活动设计
- 直流风扇QC工程图
- 各国插头标准规定型号尺寸
- 形式发票与商业发票的区别
- 《中华民族大团结》(初中)第1课-爱我中华教学课件
- 三好学生竞选PPT
- 化学(基础模块)中职PPT完整全套教学课件
评论
0/150
提交评论