版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
甘肃省靖远二中2024届数学高二下期末联考模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.若正整数除以正整数后的余数为,则记为,例如.如图程序框图的算法源于我国古代闻名中外的《中国剩余定理》.执行该程序框图,则输出的等于()A.4 B.8 C.16 D.322.已知随机变量,若,则实数的值分别为()A.4,0.6 B.12,0.4 C.8,0.3 D.24,0.23.演绎推理“因为时,是的极值点,而对于函数,,所以0是函数的极值点.”所得结论错误的原因是()A.大前提错误 B.小前提错误 C.推理形式错误 D.全不正确4.100件产品中有6件次品,现从中不放回的任取3件产品,在前两次抽到正品的条件下第三次抽到次品的概率为()A. B. C. D.5.生物实验室有5只兔子,其中只有3只测量过某项指标,若从这5只兔子中随机取出3只,则恰有2只测量过该指标的概率为A. B.C. D.6.已知,且关于的方程有实根,则与的夹角的取值范围是()A. B. C. D.7.若集合,,若,则的值为()A. B. C.或 D.或8.若对于任意实数,函数恒大于零,则实数的取值范围是()A. B. C. D.9.函数的单调递减区间为()A.或 B. C. D.10.若,则()A.2 B.0 C.-1 D.-211.设,且,则下列结论中正确的是()A. B. C. D.12.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若是定义在上的可导函数,且,对恒成立.当时,有如下结论:①,②,③,④,其中一定成立的是____.14.从甲,乙,丙,丁4个人中随机选取两人,则甲、乙两人中有且只一个被选中的概率为__________.15.已知定义在上的函数满足(其中为的导函数)且,则不等式的解集是__________.16.已知函数,若曲线在点处的切线经过圆的圆心,则实数的值为__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在处有极值.(1)求的解析式.(2)求函数在上的最值.18.(12分)已知函数.(I)解不等式:;(II)若函数的最大值为,正实数满足,证明:19.(12分)已知函数.(1)求函数的极值;(2)当时,证明:;(3)设函数的图象与直线的两个交点分别为,,的中点的横坐标为,证明:.20.(12分)在锐角三角形中,角的对边分别为,且.(1)求角的大小;(2)若,求的值.21.(12分)在的展开式中,求:(1)第3项的二项式系数及系数;(2)奇数项的二项式系数和;(3)求系数绝对值最大的项.22.(10分)在直角坐标系中直线的参数方程为(为参数),在以坐标原点为极点,轴正半轴为极轴的极坐标系中,曲线:.(1)求直线的普通方程及曲线直角坐标方程;(2)若曲线上的点到直线的距离的最小值.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】初如值n=11,i=1,i=2,n=13,不满足模3余2.i=4,n=17,满足模3余2,不满足模5余1.i=8,n=25,不满足模3余2,i=16,n=41,满足模3余2,满足模5余1.输出i=16.选C.2、B【解题分析】
由,可得,由此列出关于的方程组,从而得出结果。【题目详解】解:据题意,得,解得,故选B。【题目点拨】本题考查了二项分布的数学期望和方差,熟记离散型随机变量的数学期望和方差的性质是关键。3、A【解题分析】分析:要分析一个演绎推理是否正确,主要观察所给的大前提,小前提和结论及推理形式是否都正确,根据这几个方面都正确,才能得到这个演绎推理正确.根据三段论进行判断即可得到结论.详解:演绎推理““因为时,是的极值点,而对于函数,,所以0是函数的极值点.”中,
大前提:时,在两侧的符号如果不相反,则不是的极值点,故错误,
故导致错误的原因是:大前提错误,
故选:A.点睛:本题考查演绎推理,考查学生分析解决问题的能力,属于基础题4、A【解题分析】
由已知可知件产品中有件次品,件正品,设“前两次抽到正品”为事件,“第三次抽到次品”为事件,求出和,即可求得答案.【题目详解】由已知可知件产品中有件次品,件正品,设“前两次抽到正品”为事件,“第三次抽到次品”为事件;则∴故选:A.【题目点拨】本题是一道关于条件概率计算的题目,关键是掌握条件概率的计算公式,考查了分析能力和计算能力,属于中档题.5、B【解题分析】
本题首先用列举法写出所有基本事件,从中确定符合条件的基本事件数,应用古典概率的计算公式求解.【题目详解】设其中做过测试的3只兔子为,剩余的2只为,则从这5只中任取3只的所有取法有,共10种.其中恰有2只做过测试的取法有共6种,所以恰有2只做过测试的概率为,选B.【题目点拨】本题主要考查古典概率的求解,题目较易,注重了基础知识、基本计算能力的考查.应用列举法写出所有基本事件过程中易于出现遗漏或重复,将兔子标注字母,利用“树图法”,可最大限度的避免出错.6、B【解题分析】
根据方程有实根得到,利用向量模长关系可求得,根据向量夹角所处的范围可求得结果.【题目详解】关于的方程有实根设与的夹角为,则又又本题正确选项:【题目点拨】本题考查向量夹角的求解问题,关键是能够利用方程有实根得到关于夹角余弦值的取值范围,从而根据向量夹角范围得到结果.7、A【解题分析】
先解出集合,由,得出,于此可得知实数的值.【题目详解】解方程,即,得,由于,,则,,,,故选:A.【题目点拨】本题考查集合间的包含关系,利用包含关系求参数的值,解本题的关键就是将集合表示出来,考查计算能力,属于基础题。8、D【解题分析】
求出函数的导数,根据导数的符号求出函数的单调区间,求出最值,即可得到实数的取值范围【题目详解】当时,恒成立若,为任意实数,恒成立若时,恒成立即当时,恒成立,设,则当时,,则在上单调递增当时,,则在上单调递减当时,取得最大值为则要使时,恒成立,的取值范围是故选【题目点拨】本题以函数为载体,考查恒成立问题,解题的关键是分离含参量,运用导数求得新函数的最值,继而求出结果,当然本题也可以不分离参量来求解,依然运用导数来分类讨论最值情况。9、C【解题分析】
先求出函数的导函数,令导函数小于零,解不等式即可得出单调递减区间。【题目详解】由题可得,令,即,解得或,又因为,故,故选C【题目点拨】本题考查利用导函数求函数的单调区间,解题的关键是注意定义域,属于简单题。10、C【解题分析】令可得:,令,可得:,据此可得:-1.本题选择C选项.点睛:因为二项式定理中的字母可取任意数或式,所以在解题时根据题意,给字母赋值,是求解二项展开式各项系数和的一种重要方法.11、B【解题分析】
利用不等式性质判断或者举反例即可.【题目详解】对A,当时不满足对B,因为则成立.故B正确.对C,当时不满足,故不成立.对D,当时不满足,故不成立.故选:B【题目点拨】本题主要考查了不等式的性质运用等,属于基础题型.12、C【解题分析】试题分析:第一步从后排8人中选2人有种方法,第二步6人前排排列,先排列选出的2人有种方法,再排列其余4人只有1种方法,因此所有的方法总数的种数是考点:排列组合点评:此类题目的求解一般遵循先选择后排列,结合分步计数原理的方法二、填空题:本题共4小题,每小题5分,共20分。13、①【解题分析】
构造函数,并且由其导函数的正负判断函数的单调性即可得解.【题目详解】由得即所以所以在和单调递增,因为,所以因为所以在不等式两边同时乘以,得①正确,②、③、④错误.【题目点拨】本题考查构造函数、由导函数的正负判断函数的单调性,属于难度题.14、2【解题分析】
利用列举法:从甲,乙,丙,丁4个人中随机选取两人,共有6种结果,其中甲乙两人中有且只一个被选取,共4种结果,由古典概型概率公式可得结果.【题目详解】从甲,乙,丙,丁4个人中随机选取两人,共有(甲乙),(甲丙),(甲丁),(乙丙),(乙丁),(丙丁),6种结果,其中甲乙两人中有且只一个被选取,有(甲丙),(甲丁),(乙丙),(乙丁),共4种结果,故甲、乙两人中有且只一个被选中的概率为46=2【题目点拨】本题主要考查古典概型概率公式的应用,属于基础题.在求解有关古典概型概率的问题时,首先求出样本空间中基本事件的总数n,其次求出概率事件中含有多少个基本事件m,然后根据公式P=mn15、【解题分析】分析:根据题意,令g(x)=,对其求导可得g′(x),分析可得g′(x)<0,即函数g(x)为减函数;结合f(1)=e可得g(1)=,则不等式f(x)>ex⇔>1⇔g(x)>1⇔g(x)>g(1),借助函数的单调性分析可得答案.详解:根据题意,令g(x)=,则其导数g′(x)=,又由f′(x)<f(x),则有g′(x)<0,即函数g(x)为减函数;且g(1)=;则不等式f(x)>ex⇔>1⇔g(x)>1⇔g(x)>g(1),又由函数g(x)为减函数,则有x<1;则不等式f(x)>ex的解集为(-∞,1);故答案为:.点睛:(1)本题主要考查利用导数求函数的单调性和解不等式,意在考查学生对这些知识的掌握水平和分析推理转化能力.(2)解答本题的关键是构造函数g(x)=求其单调性,再利用单调性解不等式g(x)>g(1).16、【解题分析】
利用导数求出切线斜率,根据点斜式求得切线方程,将圆心坐标代入切线方程,进而可得结果.【题目详解】因为,,切线的斜率,所以切线方程为,即.因为圆的圆心为,所以,所以实数的值为-4,故答案为-4.【题目点拨】本题主要考查利用导数求曲线切线方程,属于中档题.求曲线切线方程的一般步骤是:(1)求出在处的导数,即在点出的切线斜率(当曲线在处的切线与轴平行时,在处导数不存在,切线方程为);(2)由点斜式求得切线方程.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)最大值为为【解题分析】分析:(1)先求出函数的导数,根据,联立方程组解出的值,即可得到的解析式;(2)求出,分别令求得的范围,可得函数增区间,求得的范围,可得函数的减区间,利用单调性可得函数的极值,然后求出的值,与极值比较大小即可求得函数的最值.详解:(1)由题意:,又由此得:经验证:∴(2)由(1)知,又所以最大值为为点睛:本题主要考查利用导数判断函数的单调性以及函数的极值与最值,属于中档题.求函数极值的步骤:(1)确定函数的定义域;(2)求导数;(3)解方程求出函数定义域内的所有根;(4)列表检查在的根左右两侧值的符号,如果左正右负(左增右减),那么在处取极大值,如果左负右正(左减右增),那么在处取极小值.(5)如果只有一个极值点,则在该处即是极值也是最值;(6)如果求闭区间上的最值还需要比较端点值的函数值与极值的大小.18、(I)(2,6);(II)详见解析.【解题分析】
(I)按零点分类讨论,去掉绝对值,分别求解不等式,即可得绝对值不等式的解集;(II)由函数,求得其最大值,得到,再利用基本不等式,即可求解.【题目详解】(I)当时,,解得,;当时,,解得,;当时,,解得,无解.综上所述,原不等式的解集为(2,6).(II)证明:=,即(当且仅当时,等号成立).【题目点拨】本题主要考查了绝对值不等式的求解,以及不等式的证明问题,其中解答中合理分类讨论去掉绝对值号是解答含绝对值不等式的关键,同时注意基本不等式在不等式证明中的应用,着重考查了推理与计算能力,属于基础题.19、(1)取得极大值,没有极小值(2)见解析(3)见解析【解题分析】
(1)利用导数求得函数的单调性,再根据极值的定义,即可求解函数的极值;(2)由,整理得整理得,设,利用导数求得函数的单调性与最值,即可求解.(3)不妨设,由(1)和由(2),得,利用单调性,即可作出证明.【题目详解】(1)由题意,函数,则,当时,,函数单调递增,当时,,函数单调递减,所以当时,取得极大值,没有极小值;(2)由得整理得,设,则,所以在上单调递增,所以,即,从而有.(3)证明:不妨设,由(1)知,则,由(2)知,由在上单调递减,所以,即,则,所以.【题目点拨】本题主要考查导数在函数中的综合应用,以及不等式的证明,着重考查了转化与化归思想、分类讨论、及逻辑推理能力与计算能力,对于恒成立问题,通常要构造新函数,利用导数研究函数的单调性,求出最值,进而得出相应的含参不等式,从而求出参数的取值范围;也可分离变量,构造新函数,直接把问题转化为函数的最值问题.20、(1);(2)1【解题分析】
(1)利用二倍角公式化简即得A
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 货币金融学写作课程设计
- 年度动态心电图监测系统设备市场分析及竞争策略分析报告
- 2025年度绿色建材木糠原料采购合同2篇
- 市政施工方案优化
- 饮品制作与服务课程设计
- 超强资料-临床麻醉学课件严重创伤病人的麻醉
- 2025年度个人沙石行业合作与资源共享合同3篇
- 2025年度旅游度假村广告合作与综合服务合同4篇
- 二零二五年度2025版互联网医疗合伙人合作合同模板3篇
- 二零二五年酒店特色餐饮品牌授权合同3篇
- 2024年全国体育专业单独招生考试数学试卷试题真题(含答案)
- 北师大版小学三年级上册数学第五单元《周长》测试卷(含答案)
- DB45T 1950-2019 对叶百部生产技术规程
- 新修订《保密法》知识考试题及答案
- 电工基础知识培训课程
- 住宅楼安全性检测鉴定方案
- 广东省潮州市潮安区2023-2024学年五年级上学期期末考试数学试题
- 市政道路及设施零星养护服务技术方案(技术标)
- 《论语》学而篇-第一课件
- 《写美食有方法》课件
- (完整word版)申论写作格子纸模板
评论
0/150
提交评论