版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届黑龙江省牡丹江市三中高二数学第二学期期末监测试题注意事项:1.答题前,考生先将自己的姓名、准考证号填写清楚,将条形码准确粘贴在考生信息条形码粘贴区。2.选择题必须使用2B铅笔填涂;非选择题必须使用0.5毫米黑色字迹的签字笔书写,字体工整、笔迹清楚。3.请按照题号顺序在各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试题卷上答题无效。4.保持卡面清洁,不要折叠,不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.《九章算术》中有如下问题:“今有勾八步,股一十五步,问勾中容圆,径几何?”其大意:“已知直角三角形两直角边长分别为步和步,问其内切圆的直径为多少步?”现若向此三角形内随机投一粒豆子,则豆子落在其内切圆外的概率是()A. B. C. D.2.袋中共有15个除了颜色外完全相同的球,其中有10个白球,5个红球.从袋中任取3个球,所取的3个球颜色不同的概率为()A. B. C. D.3.在的展开式中,记项的系数为,则+++=()A.45 B.60 C.120 D.2104.已知等比数列中,,则等于()A.9 B.5 C. D.无法确定5.函数f(x)是定义在R上的偶函数,在(-∞,0]上是减函数且f(2)=0,则使f(x)<0的x的取值范围()A.(-∞,2) B.(2,+∞)C.(-∞,-2)∪(2,+∞) D.(-2,2)6.已知,则()A. B.186 C.240 D.3047.平面内有n条直线,最多可将平面分成f(n)个区域,则f(n)的表达式为()A.n+1 B.2n C. D.n2+n+18.以双曲线的焦点为顶点,离心率为的双曲线的渐近线方程是()A. B.C. D.9.过抛物线:的焦点作两条互相垂直的直线,,直线交于,两点,直线交于,两点,若四边形面积的最小值为64,则的值为()A. B.4 C. D.810.下表提供了某厂节能降耗技术改造后在生产产品过程中记录的产量(吨)与相应的生产能耗(吨)的几组对应数据:根据上表提供的数据,求出关于的线性回归方程为,那么表中的值为()A. B. C. D.11.高三某班有60名学生(其中女生有20名),三好学生占,而且三好学生中女生占一半,现在从该班任选一名学生参加座谈会,则在已知没有选上女生的条件下,选上的是三好学生的概率是()A. B. C. D.12.某物体的位移(米)与时间(秒)的关系为,则该物体在时的瞬时速度是()A.米/秒 B.米/秒 C.米/秒 D.米/秒二、填空题:本题共4小题,每小题5分,共20分。13.2019年5月15日,亚洲文明对话大会在中国北京开幕.来自亚洲全部47个国家和世界其他国家及国际组织的1352位会议代表共同出席大会.为了保护各国国家元首的安全,相关部门将5个安保小组安排到的三个不同区域内开展安保工作,其中“甲安保小组”不能单独被分派,且每个区域至少有一个安保小组,则这样的安排方法共有_________种.14.观察下列等式:,,,……可以推测____(,用含有的代数式表示).15.已知函数,则__________.16.已知定义域为的偶函数的导函数为,对任意,均满足:.若,则不等式的解集是__________.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知等比数列,的公比分别为,.(1)若,,求数列的前项和;(2)若数列,满足,求证:数列不是等比数列.18.(12分)改革开放以来,人们的支付方式发生了巨大转变.近年来,移动支付已成为主要支付方式之一.为了解某校学生上个月对甲、乙两种移动支付方式的使用情况,从全校学生中随机抽取了100人作为样本,发现样本中甲、乙两种支付方式都不使用的有10人,样本中仅使用甲种支付方式和仅使用乙种支付方式的学生的支付金额分布情况如下:支付金额(元)支付方式大于1000仅使用甲15人8人2人仅使用乙10人9人1人(1)从全校学生中随机抽取1人,估计该学生上个月甲、乙两种支付方式都使用的概率;(2)从样本中仅使用甲种支付方式和仅使用乙种支付方式的学生中各随机抽取1人,以表示这2人中上个月支付金额大于500元的人数,用频率近似代替概率,求的分布列和数学期望19.(12分)在平面直角坐标系中,曲线的参数方程为(为参数),直线的方程为以坐标原点为极点,轴的正半轴为极轴建立极坐标系.(1)求曲线和曲线的极坐标方程;(2)若直线与曲线交于,两点,求.20.(12分)设命题函数在是减函数;命题,都有成立.(1)若命题为真命题,求实数的取值范围;(2)若为真命题,为假命题,求实数的取值范围.21.(12分)如图,矩形和菱形所在的平面相互垂直,,为中点.求证:平面平面;若,求二面角的余弦值.22.(10分)已知函数.(1)当时,求函数在上的最大值;(2)令,若在区间上为单调递增函数,求的取值范围;(3)当时,函数的图象与轴交于两点,且,又是的导函数.若正常数满足条件.证明:.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】由题意可知:直角三角向斜边长为17,由等面积,可得内切圆的半径为:落在内切圆内的概率为,故落在圆外的概率为2、C【解题分析】分析:题意所求情况分为两种,两白一红,两红一白,两种情况,列式为,除以总的事件个数即可.详解:3个球颜色不同,即分为:两白一红,两红一白,两种情况,列式为,总的事件个数为,概率为.故答案为:C.点睛:这个题目考差了古典概型的计算,对于古典概型,要求事件总数是可数的,满足条件的事件个数可数,使得满足条件的事件个数除以总的事件个数即可.3、C【解题分析】
由题意依次求出x3y0,x2y1,x1y2,x0y3,项的系数,求和即可.【题目详解】(1+x)6(1+y)4的展开式中,含x3y0的系数是:=1.f(3,0)=1;含x2y1的系数是=60,f(2,1)=60;含x1y2的系数是=36,f(1,2)=36;含x0y3的系数是=4,f(0,3)=4;∴f(3,0)+f(2,1)+f(1,2)+f(0,3)=11.故选C.【题目点拨】本题考查二项式定理系数的性质,二项式定理的应用,考查计算能力.4、A【解题分析】
根据等比中项定义,即可求得的值。【题目详解】等比数列,由等比数列中等比中项定义可知而所以所以选A【题目点拨】本题考查了等比中项的简单应用,属于基础题。5、D【解题分析】
根据偶函数的性质,求出函数在(-∞,0]上的解集,再根据对称性即可得出答案.【题目详解】由函数为偶函数,所以,又因为函数在(-∞,0]是减函数,所以函数在(-∞,0]上的解集为,由偶函数的性质图像关于轴对称,可得在(0,+∞)上的解集为(0,2),综上可得,的解集为(-2,2).故选:D.【题目点拨】本题考查了偶函数的性质的应用,借助于偶函数的性质解不等式,属于基础题.6、A【解题分析】
首先令,这样可以求出的值,然后把因式分解,这样可以变成两个二项式的乘积的形式,利用两个二项式的通项公式,就可以求出的会下,最后可以计算出的值.【题目详解】令,由已知等式可得:,,设的通项公式为:,则常数项、的系数、的系数分别为:;设的通项公式为:,则常数项、的系数、的系数分别为:,,所以,故本题选A.【题目点拨】本题考查了二项式定理的应用,正确求出通项公式是解题的关键.7、C【解题分析】1条直线将平面分成1+1个区域;2条直线最多可将平面分成1+(1+2)=4个区域;3条直线最多可将平面分成1+(1+2+3)=7个区域;……,n条直线最多可将平面分成1+(1+2+3+…+n)=1+=个区域,选C.8、D【解题分析】
由题求已知双曲线的焦点坐标,进而求出值即可得答案。【题目详解】由题可知双曲线的焦点坐标为,则所求双曲线的顶点坐标为,即,又因为离心率为,所以,解得,所以,即,所以渐近线方程是故选D【题目点拨】本题考查求双曲线的渐近线方程,解题的关键是判断出焦点位置后求得,属于简单题。9、A【解题分析】分析:详解:设直线的倾斜角为α,则当=1时S最小,故故选A.点睛:考查直线与抛物线的关系,将问题巧妙地转化为三角函数求最值问题时解题关键,属于中档题.10、A【解题分析】
先求出这组数据的样本中心点,样本中心点是用含有t的代数式表示的,把样本中心点代入变形的线性回归方程,得到关于t的一次方程,解方程,得到结果.【题目详解】∵由回归方程知=,解得t=3,故选A.【题目点拨】】本题考查回归分析的初步应用,考查样本中心点的性质,考查方程思想的应用,是一个基础题,解题时注意数字计算不要出错.11、B【解题分析】
根据所给的条件求出男生数和男生中三好学生数,本题可以看作一个古典概型,试验发生包含的事件是从40名男生中选出一个人,共有40种结果,满足条件的事件是选到的是一个三好学生,共有5种结果,根据概率公式得到结果.【题目详解】因为高三某班有60名学生(其中女生有20名),三好学生占,而且三好学生中女生占一半,所以本班有40名男生,男生中有5名三好学生,由题意知,本题可以看作一个古典概型,试验发生包含的事件是从40名男生中选出一个人,共有40种结果,满足条件的事件是选到的是一个三好学生,共有5种结果,所以没有选上女生的条件下,选上的是三好学生的概率是,故选B.【题目点拨】该题考查的是有关古典概型的概率求解问题,在解题的过程中,需要首先求得本班的男生数和男生中的三好学生数,根据古典概型的概率公式求得结果.12、B【解题分析】
根据导数的物理意义,求导后代入即可.【题目详解】由得:当时,即该物体在时的瞬时速度为:米/秒本题正确结果:【题目点拨】本题考查导数的物理意义,属于基础题.二、填空题:本题共4小题,每小题5分,共20分。13、108【解题分析】
根据题意,分两步,将5个安保小组分成组,然后全排列分派到每个区域,即可得到结果.【题目详解】根据题意,分两步进行:(1)将5个安保小组分成组,有种情况;(2)将分成的组全排列分派到每一个区域内,有种情况,根据分步计数原理,这样的安排方法共计有种情况.故答案为:108【题目点拨】本题考查了排列、组合以及分步计数原理,属于基础题.14、或或【解题分析】
观察找到规律由等差数列求和可得.【题目详解】由观察找到规律可得:故可得解.【题目点拨】本题考查观察能力和等差数列求和,属于中档题.15、26【解题分析】
由题意结合函数的解析式求解函数值即可.【题目详解】由函数的解析式可得:,,则.【题目点拨】(1)求分段函数的函数值,要先确定要求值的自变量属于哪一段区间,然后代入该段的解析式求值,当出现f(f(a))的形式时,应从内到外依次求值.(2)当给出函数值求自变量的值时,先假设所求的值在分段函数定义区间的各段上,然后求出相应自变量的值,切记要代入检验,看所求的自变量的值是否满足相应段自变量的取值范围.16、【解题分析】
先根据已知得出函数的单调性,再根据单调性解不等式.【题目详解】因为是上的偶函数,所以是上的偶函数,在上单调递增,,即解得,解集为.【题目点拨】本题主要考查函数与单调性的关系,注意构造的新函数的奇偶性及单调性的判断.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)证明见解析.【解题分析】
(1)分别求出,再得,仍然是等比数列,由等比数列前项和公式可得;(2)由已知,假设是等比数列,则,代入求得,与已知矛盾,假设错误.【题目详解】(1),,,则;证明:(2)假设数列是等比数列,可得,设数列的公比为,可得,因此有,即,因此有,与已知条件中不相等矛盾,因此假设不成立,故数列不是等比数列.【题目点拨】本题考查等比数列的通项公式,前项和公式,考查否定性命题的证明.证明否定性命题可用反证法,假设结论的反面成立,结合已知推理出矛盾的结论,说明假设错误.也可直接证明,即能说明不是等比数列.18、(1)0.45;(2)的分布列见解析;数学期望为0.9【解题分析】
(1)用减去仅使用甲、仅使用乙和两种都不使用的人数,求得都使用的人数,进而求得所求概率.(2)的所有可能值为0,1,2.根据相互独立事件概率计算公式,计算出的分布列,并求得数学期望.【题目详解】解:(1)由题意知,样本中仅使用甲种支付方式的学生有人,仅使用乙种支付方式的学生有人,甲、乙两种支付方式都不使用的学生有10人.故样本中甲、乙两种支付方式都使用的学生有人所以从全校学生中随机抽取1人,该学生上个月甲、乙两种支付方式都使用的概率估计为.(2)的所有可能值为0,1,2.记事件为“从样本仅使用甲种支付方式的学生中随机抽取1人,该学生上个月的支付金额大于500元”,事件为“从样本仅使用乙种支付方式的学生中随机抽取1人,该学生上个月的支付金额大于500元”.由题设知,事件A,B相互独立,且所以所以的分布列为0120.30.50.2故的数学期望【题目点拨】本小题主要考查频率的计算,考查相互独立事件概率计算,考查离散型随机变量分布列和数学期望的计算,属于中档题.19、(1)的极坐标方程为,直线极坐标方程为;(2).【解题分析】
(1)利用三种方程的转化方法,即可得解;(2)将代入中得,结合韦达定理即可得解.【题目详解】(1)由曲线的参数方程为(为参数),得曲线的普通方程为,则的极坐标方程为,由于直线过原点,且倾斜角为,故其极坐标方程为.(2)由得,设,对应的极径分别为,则,,.【题目点拨】本题考查三种方程的互化,考查极坐标方程的应用,属于常考题.20、(1);(2)【解题分析】
(1)将问题转化为在上恒成立;分别在和求得范围,取交集得到结果;(2)由含逻辑连接词命题的真假性可知真假或假真,分别在两种情况下求得范围,取并集得到结果.【题目详解】(1)当命题为真命题时,在上恒成立当时,;当时,,则综上所述:即:若命题为真命题,则(2)当命题为真命题时,等价于,即由得:,解得:若为真命题,为假命题,则真假或假真当真假时,;当假真时,综上所述:【题目点拨】本题考查根据命题的真假性求解参数范围的问题,涉及到函数单调性与导数的关系、恒成立问题的求解、含逻辑连接词的命题的真假性的性质应用等知识;解题关键是分别求出两个命题为真时参数的取值范围.21、证明见解析;.【解题分析】
推出,从而平面,进而得出,再得出,从而平面,由此能证明平面平面;以为原点,建立空间直角坐标系,利用向量法能求出二面角的余弦值.【题目详解】解:证明:平面平面,,平面平面.平面,.在菱形中
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024年度环保材料沙发销售及环保认证合同范本2篇
- 2024年婚姻解除与财产处理协议6篇
- 2024年二手房买卖居间服务协议2篇
- 2024年某地拆除工程社会稳定风险评估承包合同
- 2024年版劳动协议法实践运用解析论文版B版
- 2024版专利申请共享合同3篇
- 2024年商铺返租合同范本:特色餐饮商铺租赁协议2篇
- 2024年充电桩设施安装与维护合同3篇
- 2024年度气球庆典活动布置合同3篇
- 2024年桥梁工程箱梁吊装施工承包合同版B版
- 新高考3+1+2改革情况详细讲解课件
- 压铸件气孔通用标准
- 思维训练——对折问题实用教案
- 资产核销管理办法
- 光伏电站并网调试方案
- 轻钢龙骨吊顶和隔墙材料介绍和工艺
- 三科变频器SK说明书
- 光栅衍射实验报告.doc
- 腹腔镜手术设备使用说明与注意事项
- 建渣处置-运输方案(共4页)
- 轮转护士考评表(精编版)
评论
0/150
提交评论