




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届陕西省西藏民族学院附属中学高二数学第二学期期末检测模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.在平面直角坐标系中,不等式组x+y≤0x-y≤0x2+y2≤r2(rA.-1B.-5C.13D.-2.形状如图所示的2个游戏盘中(图①是半径为2和4的两个同心圆,O为圆心;图②是正六边形,点P为其中心)各有一个玻璃小球,依次摇动2个游戏盘后,将它们水平放置,就完成了一局游戏,则一局游戏后,这2个盘中的小球都停在阴影部分的概率是()A. B. C. D.3.若满足约束条件,则的最大值为()A.9 B.5 C.11 D.34.12名同学合影,站成前排4人后排8人,现摄影师要从后排8人中抽2人调整到前排,若其他人的相对顺序不变,则不同调整方法的总数是()A. B. C. D.5.已知则的最小值是()A. B.4 C. D.56.内接于半径为的半圆且周长最大的矩形的边长为().A.和 B.和 C.和 D.和7.某校开设A类选修课3门,B类选修课4门,一位同学从中共选3门.若要求两类课程中各至少选一门,则不同的选法共有A.30种 B.35种 C.42种 D.48种8.使不等式成立的一个必要不充分条件是()A. B. C. D.9.圆与圆的公切线有几条()A.1条 B.2条 C.3条 D.4条10.已知函数,若有两个极值点,,且,则的取值范围是()A. B. C. D.11.设椭机变量X~N(3,1),若P(X>4)=p,则P(2<X<4)=A.+p B.1-p C.1-2p D.-p12.已知平面α与平面β相交,直线m⊥α,则()A.β内必存在直线与m平行,且存在直线与m垂直B.β内不一定存在直线与m平行,不一定存在直线与m垂直C.β内必存在直线与m平行,不一定存在直线与m垂直D.β内不一定存在直线与m平行,但必存在直线与m垂直二、填空题:本题共4小题,每小题5分,共20分。13.在平面直角坐标系xOy中,动点到两坐标轴的距离之和等于它到定点的距离,记点P的轨迹为,给出下列四个结论:①关于原点对称;②关于直线对称;③直线与有无数个公共点;④在第一象限内,与x轴和y轴所围成的封闭图形的面积小于.其中正确的结论是________.(写出所有正确结论的序号)14.一射手对同一目标独立地进行4次射击,已知至少命中一次的概率为,则此射手的命中率是______.15.由数字0,1,2,3,4,5组成没有重复数字的六位数,其中偶数共有__________个.16.在平面直角坐标系中,设点,,点的坐标满足,则在上的投影的取值范围是__________三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)实数m取什么值时,复数是:(1)实数;(2)纯虚数;(3)表示复数z的点在复平面的第四象限.18.(12分)如图,已知椭圆的离心率是,一个顶点是.(Ⅰ)求椭圆的方程;(Ⅱ)设,是椭圆上异于点的任意两点,且.试问:直线是否恒过一定点?若是,求出该定点的坐标;若不是,说明理由.19.(12分)选修4-5:不等式选讲已知函数(Ⅰ)解不等式;(Ⅱ)对及,不等式恒成立,求实数的取值范围.20.(12分)已知(1+m)n(m是正实数)的展开式的二项式系数之和为128,展开式中含x项的系数为84,(I)求m,n的值(II)求(1+m)n(1-x)的展开式中有理项的系数和.21.(12分)为了响应党的十九大所提出的教育教学改革,某校启动了数学教学方法的探索,学校将高一年级部分生源情况基本相同的学生分成甲、乙两个班,每班40人,甲班按原有传统模式教学,乙班实施自主学习模式.经过一年的教学实验,将甲、乙两个班学生一年来的数学成绩取平均数,两个班学生的平均成绩均在,按照区间,,,,进行分组,绘制成如下频率分布直方图,规定不低于80分(百分制)为优秀.0.100.050.0252.7063.8415.024(1)完成表格,并判断是否有以上的把握认为“数学成绩优秀与教学改革有关”;甲班乙班合计大于等于80分的人数小于80分的人数合计(2)从乙班,,分数段中,按分层抽样随机抽取7名学生座谈,从中选三位同学发言,记来自发言的人数为随机变量,求的分布列和期望.22.(10分)在平面直角坐标系中,直线l的参数方程为(t为参数),以原点O为极点,x轴的正半轴为极轴建立极坐标系,曲线C的极坐标方程为.(1)求直线l的普通方程与曲线C的直角坐标方程;(2)设直线l与曲线C交于A,B两点,求线段的长.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】作出不等式组表示的平面区域,如图所示,由题意,知14πr2=π,解得r=2.因为目标函数z=x+y+1x+3=1+y-2x+3表示区域内上的点与点P(-3,2)连线的斜率加上1,由图知当区域内的点与点P的连线与圆相切时斜率最小.设切线方程为y-2=k(x+3),即2、A【解题分析】
先计算两个图中阴影面积占总面积的比例,再利用相互独立事件概率计算公式,可求概率.【题目详解】一局游戏后,这2个盘中的小球停在阴影部分分别记为事件,,由题意知,,相互独立,且,,所以“一局游戏后,这2个盘中的小球都停在阴影部分”的概率为.故选A.【题目点拨】本题考查几何概型及相互独立事件概率的求法,考查了分析解决问题的能力,属于基础题.3、A【解题分析】
先作出不等式组所表示的可行域,然后平移直线,观察直线在轴上的截距取最大值时对应的最优解,将最优解代入函数即可得出答案。【题目详解】作出不等式组所表示的可行域如下图所示:联立,得,点的坐标为,平移直线,当该直线经过点,它在轴上的截距取最大值,此时,取最大值,即,故选:A.【题目点拨】本题考查线性规划问题,考查线性目标函数的最值问题,解题思路就是作出可行域,平移直线观察在坐标轴上的截距变化寻找最优解,是常考题型,属于中等题。4、C【解题分析】试题分析:第一步从后排8人中选2人有种方法,第二步6人前排排列,先排列选出的2人有种方法,再排列其余4人只有1种方法,因此所有的方法总数的种数是考点:排列组合点评:此类题目的求解一般遵循先选择后排列,结合分步计数原理的方法5、C【解题分析】
由题意结合均值不等式的结论即可求得的最小值,注意等号成立的条件.【题目详解】由题意可得:,当且仅当时等号成立.即的最小值是.故选:C.【题目点拨】在应用基本不等式求最值时,要把握不等式成立的三个条件,就是“一正——各项均为正;二定——积或和为定值;三相等——等号能否取得”,若忽略了某个条件,就会出现错误.6、D【解题分析】
作出图像,设矩形,圆心为,,再根据三角函数关系表达矩形的长宽,进而列出周长的表达式,根据三角函数的性质求解即可.【题目详解】如图所示:设矩形,,由题意可得矩形的长为,宽为,故矩形的周长为,其中,.故矩形的周长的最大值等于,此时,.即,再由可得,故矩形的长为,宽为,故选:D.【题目点拨】本题主要考查了根据角度表达几何中长度的关系再求最值的问题,需要根据题意设角度,结合三角函数与图形的关系求出边长,再利用三角函数的性质求解.属于中档题.7、A【解题分析】本小题主要考查组合知识以及转化的思想.只在A中选有种,只在B中选有种,则在两类课程中至少选一门的选法有种.8、B【解题分析】解不等式,可得,即,故“”是“”的一个必要不充分条件,故选B.9、C【解题分析】
首先求两圆的圆心距,然后判断圆心距与半径和或差的大小关系,最后判断公切线的条数.【题目详解】圆,圆心,,圆,圆心,,圆心距两圆外切,有3条公切线.故选C.【题目点拨】本题考查了两圆的位置关系,属于简单题型.10、C【解题分析】
由可得,根据极值点可知有两根,等价于与交于两点,利用导数可求得的最大值,同时根据的大小关系构造方程可求得临界状态时的取值,结合单调性可确定的取值范围.【题目详解】,,令可得:.有两个极值点,有两根令,则,当时,;当时,,在上单调递增,在上单调递减,,令,则,解得:,此时.有两根等价于与交于两点,,即的取值范围为.故选:.【题目点拨】本题考查根据函数极值点个数及大小关系求解参数范围的问题,关键是明确极值点和函数导数之间的关系,将问题转化为直线与曲线交点问题的求解.11、C【解题分析】分析:根据题目中:“正态分布N(3,1)”,画出其正态密度曲线图:根据对称性,由P(X>4)=p的概率可求出P(2<X<4).详解:∵随机变量X~N(3,1),观察图得,P(2<X<4)=1﹣2P(X>4)=1﹣2p.故选:C.点睛:本题主要考查正态分布曲线的特点及曲线所表示的意义,注意根据正态曲线的对称性解决问题.12、D【解题分析】
可在正方体中选择两个相交平面,再选择由顶点构成且与其中一个面垂直的直线,通过变化直线的位置可得正确的选项.【题目详解】
如图,平面平面,平面,但平面内无直线与平行,故A错.又设平面平面,则,因,故,故B、C错,综上,选D.【题目点拨】本题考察线、面的位置关系,此种类型问题是易错题,可选择合适的几何体去构造符合条件的点、线、面的位置关系或不符合条件的反例.二、填空题:本题共4小题,每小题5分,共20分。13、②③④【解题分析】
由题意可得当xy≥0,可得xy+x+y﹣1=0,当xy<0时,﹣xy+x+y﹣1=0,画出P的轨迹图形,由图形可得不关于原点对称,关于直线y=x对称,且直线y=1与曲线有无数个公共点;曲线在第一象限与坐标轴围成的封闭图形的面积小于边长为1的等腰三角形的面积,即可得到正确结论个数.【题目详解】解:动点P(x,y)到两坐标轴的距离之和等于它到定点A(1,1)的距离,可得|x|+|y|,平方化为|xy|+x+y﹣1=0,当xy≥0,可得xy+x+y﹣1=0,即y,即y=﹣1,当xy<0时,﹣xy+x+y﹣1=0,即有(1﹣x)y=1﹣x.画出动点P的轨迹为图:①Γ关于原点对称,不正确;②Γ关于直线y=x对称,正确;③直线y=1与Γ有无数个公共点,正确;④在第一象限内,Γ与x轴和y轴所围成的封闭图形的面积小于,正确.故答案为:②③④.【题目点拨】本题考查曲线的方程和图形,考查曲线的性质,画出图形是解题的关键,属于中档题.14、【解题分析】
设此射手每次射击命中的概率为,由独立事件的概率与对立事件的概率可得,射击四次全都没有命中的概率为,解方程可求出的值.【题目详解】设此射手每次射击命中的概率为,分析可得,至少命中一次的对立事件为射击四次全都没有命中,由题意可知一射手对同一目标独立地射击四次全都没有命中的概率为.则,可解得,故答案为.【题目点拨】本题主要考查独立事件同时发生的概率公式以及对立事件的概率公式,意在考查灵活应用所学知识解答问题的能力,属于中档题.15、312【解题分析】
考虑个位是0和个位不是0两种情况,分别计算相加得到答案.【题目详解】当个位是0时,共有种情况;当个位不是时,共有种情况.综上所述:共有个偶数.故答案为:.【题目点拨】本题考查了排列的应用,将情况分为个位是0和个位不是0两种类别是解题的关键.16、【解题分析】
根据不等式组画出可行域,可知;根据向量投影公式可知所求投影为,利用的范围可求得的范围,代入求得所求的结果.【题目详解】由不等式组可得可行域如下图阴影部分所示:由题意可知:,在上的投影为:本题正确结果:【题目点拨】本题考查线性规划中的求解取值范围类问题,涉及到平面向量投影公式的应用;关键是能够根据可行域确定向量夹角的取值范围,从而利用三角函数知识来求解.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2);(3)【解题分析】
由复数的解析式可得,(1)当虚部等于零时,复数为实数;(2)当虚部不等于零且实部为零时,复数为纯虚数;(3)当实部大于零且虚部小于零时,复数在复平面内对应的点位于第四象限.【题目详解】解:复数,(1)当,即时,复数为实数.(2)当,且时,即时,复数为纯虚数.(3)当,且时,即时,表示复数的点在复平面的第四象限.【题目点拨】本题主要考查复数的基本概念,属于基础题.18、(Ⅰ)(Ⅱ)直线恒过定点【解题分析】试题分析:(Ⅰ)设椭圆C的半焦距为c.求出b利用离心率求出a,即可求解椭圆C的方程;(Ⅱ)证法一:直线PQ的斜率存在,设其方程为y=kx+m.将直线PQ的方程代入消去y,设P,Q,利用韦达定理,通过BP⊥BQ,化简求出,求出m,即可得到直线PQ恒过的定点.证法二:直线BP,BQ的斜率均存在,设直线BP的方程为y=kx+1,将直线BP的方程代入,消去y,解得x,设P,转化求出P的坐标,求出Q坐标,求出直线PQ的方程利用直线系方程求出定点坐标试题解析:(Ⅰ)解:设椭圆的半焦距为.依题意,得,且,解得.所以,椭圆的方程是.(Ⅱ)证法一:易知,直线的斜率存在,设其方程为.将直线的方程代入,消去,整理得.设,,则,.(1)因为,且直线的斜率均存在,所以,整理得.(2)因为,,所以,.(3)将(3)代入(2),整理得.(4)将(1)代入(4),整理得.解得,或(舍去).所以,直线恒过定点.证法二:直线的斜率均存在,设直线的方程为.将直线的方程代入,消去,得解得,或.设,所以,,所以.以替换点坐标中的,可得.从而,直线的方程是.依题意,若直线过定点,则定点必定在轴上.在上述方程中,令,解得.所以,直线恒过定点.考点:圆锥曲线的定值问题;椭圆的标准方程19、(Ⅰ).(Ⅱ).【解题分析】
详解:(Ⅰ)当时,由,解得;当时,不成立;当时,由,解得.所以不等式的解集为.(Ⅱ)因为,所以.由题意知对,,即,因为,所以,解得.【题目点拨】⑴绝对值不等式解法的基本思路是:去掉绝对值号,把它转化为一般的不等式求解,转化的方法一般有:①绝对值定义法;②平方法;③零点区域法.⑵不等式的恒成立可用分离变量法.若所给的不等式能通过恒等变形使参数与主元分离于不等式两端,从而问题转化为求主元函数的最值,进而求出参数范围.这种方法本质也是求最值.一般有:①为参数)恒成立②为参数)恒成立.20、(1),.(2)0.【解题分析】分析:(1)先根据二项式系数性质得,解得n,再根据二项式展开式的通项公式得含x项的系数为,解得m,(2)先根据二项式展
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
评论
0/150
提交评论