2024届云南省曲靖市罗平县一中数学高二下期末统考模拟试题含解析_第1页
2024届云南省曲靖市罗平县一中数学高二下期末统考模拟试题含解析_第2页
2024届云南省曲靖市罗平县一中数学高二下期末统考模拟试题含解析_第3页
2024届云南省曲靖市罗平县一中数学高二下期末统考模拟试题含解析_第4页
2024届云南省曲靖市罗平县一中数学高二下期末统考模拟试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届云南省曲靖市罗平县一中数学高二下期末统考模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.如图是求样本数据方差的程序框图,则图中空白框应填入的内容为()A. B.C. D.2.设随机变量,若,则()A. B. C. D.3.已知直线与圆交于两点,且(其中为坐标原点),则实数的值为A. B. C.或 D.或4.在中,,,分别为角,,所对的边,若,则()A.一定是锐角三角形 B.一定是钝角三角形C.一定是直角三角形 D.一定是斜三角形5.在等差数列{an}中,若a2=4,A.-1 B.0 C.1 D.66.中国古代儒家要求学生掌握六种基本才艺:礼、乐、射、御、书、数,简称“六艺”,某高中学校为弘扬“六艺”的传统文化,分别进行了主题为“礼、乐、射、御、书、数”六场传统文化知识竞赛,现有甲、乙、丙三位选手进入了前三名的最后角逐,规定:每场知识竞赛前三名的得分都分别为且;选手最后得分为各场得分之和,在六场比赛后,已知甲最后得分为分,乙和丙最后得分都是分,且乙在其中一场比赛中获得第一名,下列说法正确的是()A.乙有四场比赛获得第三名B.每场比赛第一名得分为C.甲可能有一场比赛获得第二名D.丙可能有一场比赛获得第一名7.已知函数,若且,则n-m的最小值为()A.2ln2-1 B.2-ln2 C.1+ln2 D.28.若,则()A.10 B.-10 C.1014 D.10349.函数的定义域为,导函数在内的图象如图所示.则函数在内有几个极小值点()A.1 B.2 C.3 D.410.在上单调递增,则实数的取值范围为()A. B.C. D.11.若点是曲线上任意一点,则点到直线的距离的最小值为()A. B. C. D.12.若数据的均值为1,方差为2,则数据的均值、方差为()A.1,2 B.1+s,2 C.1,2+s D.1+s,2+s二、填空题:本题共4小题,每小题5分,共20分。13.已知两个单位向量,的夹角为,,若,则_____.14.若,则=______.15.由抛物线y=x2,直线x=1,x=3和x轴所围成的图形的面积是______.16.若,则____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)如图,在四棱锥中,平面,四边形为正方形,为的中点,点在上,平面平面.(1)求证:平面;(2)求三棱锥的体积.18.(12分)为纪念“五四运动”100周年,某校团委举办了中国共产主义青年团知识宣讲活动活动结束后,校团委对甲、乙两组各10名团员进行志愿服务次数调查,次数统计结果用茎叶图记录如下,乙组记录中有一个数据模糊,无法确认,在图中以表示.(1)若甲组服务次数的平均值不小于乙组服务次数的平均值,求图中所有可能的取值;(2)团委决定对甲、乙两组中服务次数超过15次的团员授予“优秀志愿者”称号设,现从所有“优秀志愿者”里任取3人,求其中乙组的人数的分布列和数学期望.19.(12分)已知.(1)讨论的单调性;(2)若,求实数的取值范围.20.(12分)已知椭圆的离心率为,是椭圆上一点.(1)求椭圆的标准方程;(2)过椭圆右焦点的直线与椭圆交于两点,是直线上任意一点.证明:直线的斜率成等差数列.21.(12分)在平面直角坐标系中,以为极点,为极轴建立极坐标系,曲线的极坐标方程是,直线的参数方程是(为参数).求直线被曲线截得的弦长.22.(10分)已知函数.(1)讨论的单调性;(2)当时,,记函数在上的最大值为,证明:.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】

由题意知该程序的作用是求样本的方差,由方差公式可得.【题目详解】由题意知该程序的作用是求样本的方差,所用方法是求得每个数与的差的平方,再求这8个数的平均值,则图中空白框应填入的内容为:故选:D【题目点拨】本题考查了程序框图功能的理解以及样本方差的计算公式,属于一般题.2、A【解题分析】

根据对立事件的概率公式,先求出,再依二项分布的期望公式求出结果【题目详解】,即,所以,,故选A.【题目点拨】本题主要考查二项分布的期望公式,记准公式是解题的关键.3、C【解题分析】分析:利用OA⊥OB,OA=OB,可得出三角形AOB为等腰直角三角形,由圆的标准方程得到圆心坐标与半径R,可得出AB,求出AB的长,圆心到直线y=﹣x+a的距离为AB的一半,利用点到直线的距离公式列出关于a的方程,求出方程的解即可得到实数a的值.详解:∵OA⊥OB,OA=OB,∴△AOB为等腰直角三角形,又圆心坐标为(0,0),半径R=1,∴AB=.∴圆心到直线y=﹣x+a的距离d=AB==,∴|a|=1,∴a=±1.故答案为C.点睛:这个题目考查的是直线和圆的位置关系,一般直线和圆的题很多情况下是利用数形结合来解决的,联立的时候较少;在求圆上的点到直线或者定点的距离时,一般是转化为圆心到直线或者圆心到定点的距离,再加减半径,分别得到最大值和最小值;涉及到圆的弦长或者切线长时,经常用到垂径定理和垂径定理.4、C【解题分析】分析:由已知构造余弦定理条件:,再结合余弦定理,化简整理得,即一定为直角三角形.详解:由已知,得①由余弦定理:②将①代入②整理得一定为直角三角形故选C点睛:判断三角形形状(1)角的关系:通过三角恒等变形,得出内角的关系,从而判断三角形的形状.①若;则A=B;②若;则A=B或(2)边的关系:通过因式分解、配方等得出边的相应关系,从而判断三角形的形状.①若,则;②若,则;③若,则.5、B【解题分析】在等差数列an中,若a2=4,a4=2,则6、A【解题分析】

先计算总分,推断出,再根据正整数把计算出来,最后推断出每个人的得分情况,得到答案.【题目详解】由题可知,且都是正整数当时,甲最多可以得到24分,不符合题意当时,,不满足推断出,最后得出结论:甲5个项目得第一,1个项目得第三乙1个项目得第一,1个项目得第二,4个项目得第三丙5个项目得第二,1个项目得第三,所以A选项是正确的.【题目点拨】本题考查了逻辑推理,通过大小关系首先确定的值是解题的关键,意在考查学生的逻辑推断能力.7、C【解题分析】

作出函数的图象,由题意可得,求得,可得,,求出导数和单调区间,可得极小值,且为最小值,即可得解.【题目详解】解:作出函数的图象如下,,且,可得,,即为,可得,,,令,则当时,,递减;当时,,递增.则在处取得极小值,也为最小值,故选C.【题目点拨】本题考查分段函数及应用,注意运用转化思想和数形结合思想,运用导数求单调区间和极值、最值,考查化简整理的运算能力,属于中档题.8、C【解题分析】

先求出,对等式两边求导,代入数据1得到答案.【题目详解】取对等式两边求导取故答案为C【题目点拨】本题考查了二项式定理,对两边求导是解题的关键.9、A【解题分析】

直接利用极小值点两侧函数的单调性是先减后增,对应导函数值是先负后正,再结合图像即可得出结论.【题目详解】因为极小值点两侧函数的单调性是先减后增,对应导函数值是先负后正,由图得:导函数值先负后正的点只有一个,故函数在内极小值点的个数是1.故选:A【题目点拨】本题考查了极小值点的概念,需熟记极小值点的定义,属于基础题.10、D【解题分析】

利用函数在连续可导且单调递增,可得导函数在大于等于0恒成立即可得到的取值范围.【题目详解】因为函数在连续可导且单调递增,所以在恒成立,分离参数得恒成立,即,故选D.【题目点拨】本题考查函数在区间内单调递增等价于在该区间内恒成立.11、C【解题分析】点是曲线上任意一点,所以当曲线在点P的切线与直线平行时,点P到直线的距离的最小,直线的斜率为1,由,解得或(舍).所以曲线与直线的切点为.点到直线的距离最小值是.选C.12、B【解题分析】

由题意利用均值和方差的性质即可确定新的数据的方差和均值.【题目详解】由题意结合均值、方差的定义可得:数据的均值、方差为,.故选:B.【题目点拨】本题主要考查离散型数据的均值与方差的性质和计算,属于中等题.二、填空题:本题共4小题,每小题5分,共20分。13、2;【解题分析】

试题分析:由可得,即,故填2.考点:1.向量的运算.2.向量的数量积.14、365【解题分析】分析:令代入可知的值,令代入可求得的值,然后将两式相加可求得的值.详解:中,令代入可知令代入可得,除以相加除以2可得.即答案为365.点睛:本题主要考查的是二项展开式各项系数和,充分利用赋值法是解题的关键.15、【解题分析】

由题意,作出图形,确定定积分,即可求解所围成的图形的面积.【题目详解】解析:如图所示,S=x2dx=1=(33-13)=.【题目点拨】本题主要考查了定积分的应用,其中根据题设条件,作出图形,确定定积分求解是解答的关键,着重考查了推理与运算能力,以及数形结合思想的应用,属于基础题.16、【解题分析】

通过,即可求出的值,通过,即可求出的值,最终可求出的值.【题目详解】令,可得令,可得【题目点拨】本题通过赋值法来研究二项展开式系数的和,是一道基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)详见解析(2)【解题分析】

(1)在平面内知道两条相交直线与垂直,利用判定定理即可完成证明;(2)通过辅助线,将与平行四边形关联,从而计算出长度,然后即可求解三棱锥的体积.【题目详解】解:(1)平面,,又四边形为正方形,,且,平面,为的中点,,且,平面;(2)作于,连接,如图所示:平面平面,面,由(1)知平面,,又平面平面,面,平面,平面,平面平面,平面,四边形为平行四边形,为的中点,,【题目点拨】本题考查立体几何中的线面垂直关系证明以及体积计算,难度一般.计算棱锥体积的时候,可以采取替换顶点位置的方式去计算,这样有时候能简化运算.18、(1)的取值为0或1或1.(1)见解析,【解题分析】

(1)根据甲组服务次数的平均值不小于乙组服务次数的平均值列不等式,由此求得的可能取值.(1)根据超几何分布的分布列计算公式,计算出分布列并求得数学期望.【题目详解】(1)甲组10名团员服务次数的平均值为,乙组10名团员服务次数的平均值为.由题意得,即.故图中的取值为0或1或1.(1)由图知,甲组“优秀志愿者”有1人,乙组“优秀志愿者”有3人.由题意,随机变量的所有可能取值为1,1,3,则.所以的分布列为113故.【题目点拨】本小题主要考查根据茎叶图计算平均数,考查超几何分布分布列和期望的计算,考查数据处理能力,属于基础题.19、(Ⅰ)详见解析;(Ⅱ).【解题分析】试题分析:(Ⅰ)由函数的解析式可得,当时,,在上单调递增;当时,由导函数的符号可知在单调递减;在单调递增.(Ⅱ)构造函数,问题转化为在上恒成立,求导有,注意到.分类讨论:当时,不满足题意.当时,,在上单调递增;所以,满足题意.则实数的取值范围是.试题解析:(Ⅰ),当时,,.∴在上单调递增;当时,由,得.当时,;当时,.所以在单调递减;在单调递增.(Ⅱ)令,问题转化为在上恒成立,,注意到.当时,,,因为,所以,,所以存在,使,当时,,递减,所以,不满足题意.当时,,当时,,,所以,在上单调递增;所以,满足题意.综上所述:.20、(1);(2)证明见解析.【解题分析】分析:(1)由椭圆的离心率为,以及点M在椭圆上,结合a,b,c关系列出方程组求解即可;(2)分过椭圆右焦点的直线斜率不存在和存在两种情况,进行整理即可.详解:(1);(2)因为右焦点,当直线的斜率不存在时其方程为,因此,设,则,所以且,所以,,因此,直线和的斜率是成等差数列.当直线的斜率存在时其方程设为,由得,,所以,因此,,,,,所以,,又因为,所以有,因此,直线和的斜率是成等差数列,综上可知直线和的斜率是成等差数列.点睛:本题考查直线和圆锥曲线的位置关系,考查数学转化思想方法,考查计算能力与解决问题的能力.21、【解题分析】分析:首先求得直角坐标方程,然后求得圆心到直线的距离,最后利用弦长公式整理计算即可求得最终结果;详解:利用加减消元法消去参数得曲线的直角坐标方程是,同时得到直线的普通方程是,圆心到直线的距离,则弦长为直线被曲线截得的弦长为点睛:本题考查了圆的弦长公式,极坐标方程、参数方程与直角坐标方程互化等,重点考查学生对基础概念的理解和计算能力,属于中等题.22、(1)单调递减区间为,单调递增区间为;(2)见解析.【

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论