版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
山东省淄博市名校2024届高二数学第二学期期末教学质量检测试题注意事项:1.答题前,考生先将自己的姓名、准考证号码填写清楚,将条形码准确粘贴在条形码区域内。2.答题时请按要求用笔。3.请按照题号顺序在答题卡各题目的答题区域内作答,超出答题区域书写的答案无效;在草稿纸、试卷上答题无效。4.作图可先使用铅笔画出,确定后必须用黑色字迹的签字笔描黑。5.保持卡面清洁,不要折暴、不要弄破、弄皱,不准使用涂改液、修正带、刮纸刀。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.构造如图所示的图形,它是由3个全等的三角形与中间的一个小等边三角形拼成的一个大等边三角形,设,则与的面积之比为()A. B. C. D.2.已知x,y的取值如下表,从散点图知,x,y线性相关,且y=0.6x+a,则下列说法正确的是(x1234y1.41.82.43.2A.回归直线一定过点(2.2,2.2)B.x每增加1个单位,y就增加1个单位C.当x=5时,y的预报值为3.7D.x每增加1个单位,y就增加0.7个单位3.若函数的图象的顶点在第一象限,则函数的图像是()A. B.C. D.4.椭圆的点到直线的距离的最小值为()A. B. C. D.05.已知定义在R上的函数满足:对任意x∈R,都有成立,且当时,(其中为的导数).设,则a,b,c三者的大小关系是()A. B. C. D.6.已知函数f(x)=x(lnx-ax)有两个极值点,则实数a的取值范围是()A.(-∞,0) B. C.(0,1) D.(0,+∞)7.为了得到函数的图象,只需把函数的图象上所有的点()A.向左平移个单位长度 B.向右平移个单位长度C.向左平移个单位长度 D.向右平移个单位长度8.两个变量y与x的回归模型中,分别选择了4个不同模型,它们的相关指数R2如下,其中拟合效果最好的模型是()A.模型1的相关指数R2为0.98 B.模型2的相关指数R2为0.80C.模型3的相关指数R2为0.50 D.模型4的相关指数R2为0.259.若函数是奇函数,则使得成立的的取值范围是()A. B.C. D.10.下列函数中,满足“且”的是()A. B.C. D.11.某单位为了解用电量(度)与气温(℃)之间的关系,随机统计了某天的用电量与当天气温,并制作了统计表:由表中数据得到线性回归方程,那么表中的值为()气温(℃)181310-1用电量(度)243464A. B. C. D.12.曾玉、刘云、李梦、张熙四人被北京大学、清华大学、武汉大学和复旦大学录取,他们分别被哪个学校录取,同学们做了如下的猜想甲同学猜:曾玉被武汉大学录取,李梦被复旦大学录取同学乙猜:刘云被清华大学录取,张熙被北京大学录取同学丙猜:曾玉被复旦大学录取,李梦被清华大学录取同学丁猜:刘云被清华大学录取,张熙被武汉大学录取结果,恰好有三位同学的猜想各对了一半,还有一位同学的猜想都不对那么曾玉、刘云、李梦、张熙四人被录取的大小可能是()A.北京大学、清华大学、复旦大学、武汉大学B.武汉大学、清华大学、复旦大学、北京大学C.清华大学、北京大学、武汉大学、复旦大学D.武汉大学、复旦大学、清华大学、北京大学二、填空题:本题共4小题,每小题5分,共20分。13.如图,棱长为2的正方体中,是棱的中点,点P在侧面内,若垂直于,则的面积的最小值为__________.14.同时转动如图所示的两个转盘,记转盘甲得到的数为x,转盘乙得到的数为y,构成数对(x,y),则所有数对(x,y)中满足xy=4的概率为____.15.如图,在半径为3的球面上有A、B、C三点,,,球心O到平面ABC的距离是,则B、C两点的球面距离是______.16.已知复数满足(是虚数单位),则______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)小威初三参加某高中学校的数学自主招生考试,这次考试由十道选择题组成,得分要求是:做对一道题得1分,做错一道题扣去1分,不做得0分,总得分7分就算及格,小威的目标是至少得7分获得及格,在这次考试中,小威确定他做的前六题全对,记6分,而他做余下的四道题中,每道题做对的概率均为p,考试中,小威思量:从余下的四道题中再做一题并且及格的概率;从余下的四道题中恰做两道并且及格的概率,他发现,只做一道更容易及格.(1)设小威从余下的四道题中恰做三道并且及格的概率为,从余下的四道题中全做并且及格的概率为,求及;(2)由于p的大小影响,请你帮小威讨论:小威从余下的四道题中恰做几道并且及格的概率最大?18.(12分)在平面直角坐标系中,直线的参数方程为为参数),在极坐标系(与直角坐标系取相同的单位长度,且以原点O为极点,以轴正半轴为极轴)中,圆C的方程为.(1)求圆C的直角坐标方程;(2)设圆C与直线交于A,B两点,若点P坐标为(3,),求的值.19.(12分)如图,四棱锥P-ABCD中,底面ABCD是边长为2的正方形,,,且,E为PD中点.(I)求证:平面ABCD;(II)求二面角B-AE-C的正弦值.20.(12分)已知函数,.(1)求函数的最小正周期;(2)求函数的对称中心和单调递增区间.21.(12分)现将甲、乙两个学生在高二的6次数学测试的成绩(百分制)制成如图所示的茎叶图,进人高三后,由于改进了学习方法,甲、乙这两个学生的考试数学成绩预计同时有了大的提升.若甲(乙)的高二任意一次考试成绩为,则甲(乙)的高三对应的考试成绩预计为(若>100.则取为100).若已知甲、乙两个学生的高二6次考试成绩分别都是由低到高进步的,定义为高三的任意一次考试后甲、乙两个学生的当次成绩之差的绝对值.(I)试预测:在将要进行的高三6次测试中,甲、乙两个学生的平均成绩分别为多少?(计算结果四舍五入,取整数值)(Ⅱ)求的分布列和数学期望.22.(10分)如图所示的茎叶图记录了华润万家在渭南城区甲、乙连锁店四天内销售情况的某项指标统计:(I)求甲、乙连锁店这项指标的方差,并比较甲、乙该项指标的稳定性;(Ⅱ)每次都从甲、乙两店统计数据中随机各选一个进行比对分析,共选了3次(有放回选取).设选取的两个数据中甲的数据大于乙的数据的次数为,求的分布列及数学期望
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
由题意得出点为的中点,由余弦定理得出,结合三角形面积公式得出正确答案.【题目详解】,,即点为的中点由余弦定理得:解得:故选:D【题目点拨】本题主要考查了余弦定理以及三角形的面积公式,属于中档题.2、C【解题分析】
由已知求得样本点的中心的坐标,代入线性回归方程即可求得a值,进一步求得线性回归方程,然后逐一分析四个选项即可得答案.【题目详解】解:由已知得,x=1+2+3+44=2.5,由回归直线方程y^=0.6x+a^恒过样本中心点(2.5,2.2),得2.2=0.6×2.5+∴回归直线方程为ŷx每增加1个单位,y就增加1个单位,故B错误;当x=5时,y的预测值为3.1,故C正确;x每增加1个单位,y就增加0.6个单位,故D错误.∴正确的是C.故选C.【题目点拨】本题考查线性回归直线方程,解题关键是性质:线性回归直线一定过点(x3、A【解题分析】
求导,根据导函数的性质解题。【题目详解】,斜率为正,排除BD选项。的图象的顶点在第一象限其对称轴大于0即b<0,选A【题目点拨】本题考查根据已知信息选导函数的大致图像。属于简单题。4、D【解题分析】
写设椭圆1上的点为M(3cosθ,2sinθ),利用点到直线的距离公式,结合三角函数性质能求出椭圆1上的点到直线x+2y﹣4=1的距离取最小值.【题目详解】解:设椭圆1上的点为M(3cosθ,2sinθ),则点M到直线x+2y﹣4=1的距离:d|5sin(θ+α)﹣4|,∴当sin(θ+α)时,椭圆1上的点到直线x+2y﹣4=1的距离取最小值dmin=1.故选D.【题目点拨】本题考查直线与圆的位置关系、椭圆的参数方程以及点到直线的距离、三角函数求最值,属于中档题.5、B【解题分析】试题分析:由题意得:对任意x∈R,都有,即f(x)=f(2-x)成立,所以函数的对称轴为x=1,所以f(3)=f(-1).因为当x∈(-∞,1)时,(x-1)f′(x)<0,所以f′(x)>0,所以函数f(x)在(-∞,1)上单调递增.因为-1<0<,所以f(-1)<f(0)<f(),即f(3)<f(0)<f(),所以c<a<b.故选B.考点:本题主要考查熟练函数的奇偶性、单调性、对称性等,利用导数研究函数的单调性。点评:中档题,熟练掌握函数的性质如奇偶性、单调性、周期性、对称性等,在给定区间,导数值非负,函数是增函数,导数值为非正,函数为减函数。自左向右看,函数图象上升,函数增;函数图象下降,函数减。6、B【解题分析】函数f(x)=x(lnx﹣ax),则f′(x)=lnx﹣ax+x(﹣a)=lnx﹣2ax+1,令f′(x)=lnx﹣2ax+1=0得lnx=2ax﹣1,函数f(x)=x(lnx﹣ax)有两个极值点,等价于f′(x)=lnx﹣2ax+1有两个零点,等价于函数y=lnx与y=2ax﹣1的图象有两个交点,在同一个坐标系中作出它们的图象(如图)当a=时,直线y=2ax﹣1与y=lnx的图象相切,由图可知,当0<a<时,y=lnx与y=2ax﹣1的图象有两个交点.则实数a的取值范围是(0,).故选B.7、D【解题分析】
通过变形,通过“左加右减”即可得到答案.【题目详解】根据题意,故只需把函数的图象上所有的点向右平移个单位长度可得到函数的图象,故答案为D.【题目点拨】本题主要考查三角函数的平移变换,难度不大.8、A【解题分析】解:因为回归模型中拟合效果的好不好,就看相关指数是否是越接近于1,月接近于1,则效果越好.选A9、C【解题分析】的定义域为,它应该关于原点对称,所以,又时,,,为奇函数.又原不等式可以化为,所以,所以,选C.点睛:如果一个函数为奇函数或偶函数,那么它的定义域必须关于原点对称,我们可以利用这个性质去求奇函数或偶函数中的参数的值.10、C【解题分析】
根据题意知,函数在上是减函数,根据选项判断即可。【题目详解】根据题意知,函数在上是减函数。选项A,在上是增函数,不符合;选项B,在上不单调,不符合;选项C,在上是减函数,符合;选项D,在上是增函数,不符合;综上,故选C。【题目点拨】本题主要考查函数单调性的定义应用以及常见函数的单调性的判断。11、C【解题分析】
由表中数据计算可得样本中心点,根据回归方程经过样本中心点,代入即可求得的值.【题目详解】由表格可知,,根据回归直线经过样本中心点,代入回归方程可得,解得,故选:C.【题目点拨】本题考查了线性回归方程的简单应用,由回归方程求数据中的参数,属于基础题.12、D【解题分析】
推理得到甲对了前一半,乙对了后一半,丙对了后一半,丁全错,得到答案.【题目详解】根据题意:甲对了前一半,乙对了后一半,丙对了后一半,丁全错,曾玉、刘云、李梦、张熙被录取的大学为武汉大学、复旦大学、清华大学、北京大学(另外武汉大学、清华大学、北京大学、复旦大学也满足).故选:.【题目点拨】本题考查了逻辑推理,意在考查学生的推理能力.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】
建立空间直角坐标系,由,求得,得到,进而求得三角形的面积的最小值,得到答案.【题目详解】以D点为空间直角坐标系的原点,以DC所在直线为y轴,以DA所在直线为x轴,以为z轴,建立空间直角坐标系.则点,所以.因为,所以,因为,所以,所以,因为B(2,2,0),所以,所以因为,所以当时,.因为BC⊥BP,所以.故答案为:.【题目点拨】本题主要考查了空间向量的应用,其中解答建立适当的空间直角坐标系,利用向量的坐标表示,以及向量的数量积的运算,求得的最小值是解答的关键,着重考查了推理与运算能力,属于中档试题.14、【解题分析】试题分析:总的数对有,满足条件的数对有3个,故概率为考点:等可能事件的概率.点评:本题考查运用概率知识解决实际问题的能力,注意满足独立重复试验的条件,解题过程中判断概率的类型是难点也是重点,这种题目高考必考,应注意解题的格式15、【解题分析】试题分析:由已知,AC是小圆的直径.所以过球心O作小圆的垂线,垂足是AC的中点.,AC=3,∴BC=3,即BC=OB=OC.∴∠BOC=,则B、C两点的球面距离=×3=π.考点:球的几何特征,球面距离.点评:中档题,解有关球面距离的问题,最关键是突出球心,找出数量关系.16、【解题分析】
利用复数的除法运算化简,进而求得.【题目详解】依题意,故故答案为:.【题目点拨】本小题主要考查复数除法运算,考查复数的模的计算,属于基础题.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),.(2)时,恰做一道及格概率最大;时,;时,恰做三道及格概率最大.【解题分析】分析:(1)根据题意得到,;(2)根据题意得到选择概率较大的即可,分且,且,且三种情况.详解:(1),;(2)①且,∴;②且,;③且,无解;综上,时,恰做一道及格概率最大;时,;时,恰做三道及格概率最大.点睛:这个题目考查的是概率的计算以及多项式比较大小的应用,分类讨论的思想.。18、(1)(2)【解题分析】
(1)由极坐标与平面直角坐标之间的转化公式求得;(2)利用直线参数方程中的几何意义求解.【题目详解】解,(1)∵圆的极坐标方程为∴(*)又∵,∴代入(*)即得圆的直角坐标方程为(2)直线1的参数方程可化为代入圆c的直角坐标方程,得,∴∴【题目点拨】本题考查平面直角坐标系和极坐标的互化,以及直线的参数方程中的的几何意义,属于中档题.19、(I)见解析(II)【解题分析】
(I)根据题目所给条件,利用直线与平面垂直的判定方法分别证明出平面PAB以及平面,进而得到和,从而推得线面垂直.(II)根据已知条件,以A为原点,AB为轴,AD为轴,AP为轴建立直角坐标系,分别求出平面ABE和平面AEC的法向量,最后利用向量法求出二面角B-AE-C的正弦值.【题目详解】解:(I)证明:∵底面ABCD为正方形,∴,又,,∴平面PAB,∴.同理,∴平面ABCD(II)建立如图的空间直角坐标系A-xyz,则,,,,易知设为平面ABE的一个法向量,又,,∴令,,得.设为平面AEC的一个法向量,又∴令,得.∴二面角B-AE-C的正弦值为.【题目点拨】本题主要考查了通过证明直线与平面垂直来推出直线与直线垂直,以及利用向量法求二面角的问题,解题时要注意根据图形特征或者已知要求确定二面角是锐角或钝角,从而得出问题的结果.20、(1).(2),;,.【解题分析】分析:(1)分别利用两角和的正弦、余弦公式及二倍角正弦公式化简函数式,然后利用用公式求周期即可;(2)根据正弦函数的图象与性质,求出函数f(x)的对称中心与单调增区间.详解:(1)∵.∴.(2)令得:,所以对称中心为:,令解得单调递增区间为:,.点睛:函
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 民防工程合同模板
- 小区工程分包合同模板
- 建工合同模板
- 房屋共同修建合同模板
- 楼面防水施工合同模板
- 房屋买卖借用合同模板
- 2024年双边投资合作协议
- 剧本授权合同模板
- 合同模板磨具费用分摊
- 招生运营合作合同模板
- 德育主题班会-与同学友好相处课件
- 广西南宁市邕宁区2023-2024学年上学期八年级期中数学试卷
- ipad商标侵权案分析
- 2024中考语文《水浒传》历年真题(解析版)
- 【星巴克国际避税的案例分析12000字(论文)】
- 盐田采盐生产示范
- 2024年中央国债登记结算有限责任公司招聘笔试参考题库含答案解析
- 《小学急救知识培训》课件
- 2024年磷矿及磷化工行业分析报告及未来发展趋势
- 中药热奄包教学课件
- 动物园安全培训课件
评论
0/150
提交评论