版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
浙江宁波市北仑区2024届高二数学第二学期期末综合测试模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知函数与函数,下列选项中不可能是函数与图象的是A. B.C. D.2.利用数学归纳法证明“1+a+a2+…+an+1=,(a≠1,nN)”时,在验证n=1成立时,左边应该是()A.1 B.1+a C.1+a+a2 D.1+a+a2+a33.函数的一个零点落在下列哪个区间()A.(0,1) B.(1,2) C.(2,3) D.(3,4)4.一个盒子里装有大小、形状、质地相同的12个球,其中黄球5个,蓝球4个,绿球3个.现从盒子中随机取出两个球,记事件为“取出的两个球颜色不同”,事件为“取出一个黄球,一个绿球”,则A. B.C. D.5.已知i是虚数单位,m,n∈R,且m+i=1+ni,则=()A.i B.1 C.-i D.-16.若,则()A. B.1 C.0 D.7.l:与两坐标轴所围成的三角形的面积为A.6 B.1 C. D.38.已知空间不重合的三条直线、、及一个平面,下列命题中的假命题是().A.若,,则 B.若,,则C.若,,则 D.若,,则9.已知集合满足,则集合的个数是()A.4 B.3 C.2 D.110.已知函数,若,则实数a的取值范围是()A. B. C. D.11.过抛物线的焦点的直线交抛物线于两点,点是原点,若;则的面积为()A. B. C. D.12.已知抛物线上一动点到其准线与到点M(0,4)的距离之和的最小值为,F是抛物线的焦点,是坐标原点,则的内切圆半径为A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.若为上的奇函数,且满足,对于下列命题:①;②是以4为周期的周期函数;③的图像关于对称;④.其中正确命题的序号为_________14.已知点在直线(为参数)上,点为曲线(为参数)上的动点,则的最小值为________________.15.某研究性学习小组调查研究学生玩手机对学习的影响,部分统计数据如表玩手机不玩手机合计学习成绩优秀4812学习成绩不优秀16218合计201030经计算的值,则有__________的把握认为玩手机对学习有影响.附:0.150.100.050.0250.0100.0050.0012.0722.7063.8415.0246.6357.87910.828,.16.已知离散型随机变量服从正态分布,且,则____.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)某工厂生产某种型号的电视机零配件,为了预测今年月份该型号电视机零配件的市场需求量,以合理安排生产,工厂对本年度月份至月份该型号电视机零配件的销售量及销售单价进行了调查,销售单价(单位:元)和销售量(单位:千件)之间的组数据如下表所示:月份销售单价(元)销售量(千件)(1)根据1至月份的数据,求关于的线性回归方程(系数精确到);(2)结合(1)中的线性回归方程,假设该型号电视机零配件的生产成本为每件元,那么工厂如何制定月份的销售单价,才能使该月利润达到最大(计算结果精确到)?参考公式:回归直线方程,其中.参考数据:.18.(12分)如图,在以为顶点的多面体中,平面,,.(1)请在图中作出平面,使得且,并说明理由;(2)证明:.19.(12分)已知椭圆C:,点P(0,1).(1)过P点作斜率为k(k>0)的直线交椭圆C于A点,求弦长|PA|(用k表示);(2)过点P作两条互相垂直的直线PA,PB,分别与椭圆交于A、B两点,试问:直线AB是否经过一定点?若存在,则求出定点,若不存在,则说明理由?20.(12分)已知函数(1)求函数的单调区间;(2)已知,且恒成立,求的最大值;21.(12分)已知函数.(1)若函数在区间内是单调递增函数,求实数a的取值范围;(2)若函数有两个极值点,,且,求证:.(注:为自然对数的底数)22.(10分)一个口袋里装有7个白球和1个红球,从口袋中任取5个球.(1)共有多少种不同的取法?(2)其中恰有一个红球,共有多少种不同的取法?(3)其中不含红球,共有多少种不同的取法?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】
对进行分类讨论,分别作出两个函数图象,对照选项中的图象,利用排除法,可得结果.【题目详解】时,函数与图象为:故排除;,令,则或,当时,0为函数的极大值点,递减,函数与图象为:故排除;当时,0为函数的极小值点,递增,函数与图象为:故排除;故选.【题目点拨】本题考查的知识点是三次函数的图象和性质,指数函数的图象和性质,分类讨论思想,难度中档.函数图象的辨识可从以下方面入手:(1)从函数的定义域,判断图象的左右位置;从函数的值域,判断图象的上下位置.(2)从函数的单调性,判断图象的变化趋势;(3)从函数的奇偶性,判断图象的对称性;(4)从函数的特征点,排除不合要求的图象.2、C【解题分析】考点:数学归纳法.分析:首先分析题目已知用数学归纳法证明:“1+a+a1+…+an+1=(a≠1)”在验证n=1时,左端计算所得的项.把n=1代入等式左边即可得到答案.解:用数学归纳法证明:“1+a+a1+…+an+1=(a≠1)”在验证n=1时,把当n=1代入,左端=1+a+a1.故选C.3、B【解题分析】
根据函数的零点存在原理判断区间端点处函数值的符号情况,从而可得答案.【题目详解】由的图像在上是连续不间断的.且在上单调递增,又,,根据函数的零点存在原理有:在在有唯一零点且在内.故选:B.【题目点拨】本题考查函数的零点所在区间,利用函数的零点存在原理可解决,属于基础题.4、D【解题分析】分析:先求取出的两个球颜色不同得概率,再求取出一个黄球,一个绿球得概率可,最后根据条件概率公式求结果.详解:因为所以,选D.点睛:本题考查条件概率计算公式,考查基本求解能力.5、A【解题分析】
先根据复数相等得到的值,再利用复数的四则混合运算计算.【题目详解】因为,所以,则.故选A.【题目点拨】本题考查复数相等以及复数的四则混合运算,难度较易.对于复数的四则混合运算,分式类型的复数式子,采用分母实数化计算更加方便.6、D【解题分析】分析:根据题意求各项系数和,直接赋值法令x=-1代入即可得到.详解:已知,根据二项式展开式的通项得到第r+1项是,故当r为奇数时,该项系数为负,故原式令x=-1代入即可得到.故答案为D.点睛:这个题目考查了二项式中系数和的问题,二项式主要考查两种题型,一是考查系数和问题;二是考查特定项系数问题;在做二项式的问题时,看清楚题目是求二项式系数还是系数,还要注意在求系数和时,是不是缺少首项;解决这类问题常用的方法有赋值法,求导后赋值,积分后赋值等.7、D【解题分析】
先求出直线与坐标轴的交点,再求三角形的面积得解.【题目详解】当x=0时,y=2,当y=0时,x=3,所以三角形的面积为.故选:D【题目点拨】本题主要考查直线与坐标轴的交点的坐标的求法,意在考查学生对该知识的理解掌握水平和分析推理能力.8、B【解题分析】
根据线线、线面有关定理对选项逐一分析,由此确定是假命题的选项.【题目详解】对于A选项,根据平行公理可知,A选项正确.对于B选项,两条直线平行与同一个平面,这两条直线可以相交、平行或异面,故B选项是假命题.对于C选项,由于,,根据空间角的定义可知,,C选项正确.对于D选项,由于,所以平行于平面内一条直线,而,所以,所以,即D选项正确.故选:B.【题目点拨】本小题主要考查空间线线、线面有关命题真假性的判断,属于基础题.9、B【解题分析】
利用列举法,求得集合的所有可能,由此确定正确选项.【题目详解】由于集合满足,所以集合的可能取值为,共种可能.故选:B【题目点拨】本小题主要考查子集和真子集的概念,属于基础题.10、D【解题分析】由函数,可得,所以函数为奇函数,又,因为,所以,所以函数为单调递增函数,因为,即,所以,解得,故选D.点睛:本题考查了函数的单调性、奇偶性和函数不等式的求解问题,其中解答中函数的奇偶性和函数的单调性,转化为不等式是解答的关键,着重考查了分析问题和解答问题的能力,对于解函数不等式:首先根据函数的单调性和奇偶性把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在外层函数的定义域内是试题的易错点.11、C【解题分析】
试题分析:抛物线焦点为,准线方程为,由得或所以,故答案为C.考点:1、抛物线的定义;2、直线与抛物线的位置关系.12、D【解题分析】
由抛物线的定义将到准线的距离转化为到焦点的距离,到其准线与到点M(0,4)的距离之和的最小值,也即为最小,当三点共线时取最小值.所以,解得,由内切圆的面积公式,解得.故选D.二、填空题:本题共4小题,每小题5分,共20分。13、①②④【解题分析】
由结合题中等式可判断命题①的正误;根据题中等式推出来判断出命题②的正误;由函数为奇函数来判断命题③的正误;在题中等式中用替换可判断出命题④的正误.【题目详解】对于命题①,由于函数是上的奇函数,则,在等式中,令可得,得,命题①正确;对于命题②,,所以,是以为周期的周期函数,命题④正确;对于命题③,由于函数是上的奇函数,不关于直线(即轴)对称,命题③错误;对于命题④,由,可得,即,由于函数是上的奇函数,则,命题④正确.故答案为:①②④.【题目点拨】本题考查函数的奇偶性、对称性以及周期性的推导,求解时充分利用题中的等式以及奇偶性、对称性以及周期性的定义式,不断进行赋值进行推导,考查推理能力,属于中等题。14、【解题分析】
先求出直线的普通方程,再求出点到直线的距离,再利用三角函数的性质求出|MN|的最小值.【题目详解】由题得直线方程为,由题意,点到直线的距离,∴.故答案为:【题目点拨】本题主要考查参数方程与普通方程的互化,考查点到直线的距离的最值的求法和三角函数的性质,意在考查学生对这些知识的理解掌握水平,属于基础题.15、99.5【解题分析】分析:由已知列联表计算出后可得.详解:,∵,∴有99.5%的把握认为玩手机对学习有影响.点睛:本题考查独立性检验,解题关键是计算出,然后根据对照表比较即可.16、【解题分析】∵随机变量X服从正态分布,∴μ=1,得对称轴是x=1.∵,∴P(1<ξ<3)==0.468,∴P(1<ξ<3)=0.468=.故答案为.点睛:关于正态曲线在某个区间内取值的概率求法①熟记P(μ-σ<X≤μ+σ),P(μ-1σ<X≤μ+1σ),P(μ-3σ<X≤μ+3σ)的值.②充分利用正态曲线的对称性和曲线与x轴之间面积为1.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)(2)7月份销售单价为10.8元时,该月利润才能达到最大.【解题分析】
(1)利用公式可计算线性回归方程.(2)利用(1)的回归方程可得7月份的利润函数,利用二次函数的性质可得其最大值.【题目详解】解:(1)由条件知,,,,从而,故关于的线性回归方程为.(2)假设7月份的销售单价为元,则由(1)可知,7月份零配件销量为,故7月份的利润,其对称轴,故7月份销售单价为10.8元时,该月利润才能达到最大.【题目点拨】本题考查线性回归方程的计算,注意线性回归方程所在的直线必定过点.此类问题是基础题.18、(1)见解析;(2)见解析【解题分析】
(1)取中点,连接,则平面即为所求平面,可证明平面;(2)结合(1)先证明三角形是边长为1的正三角形,然后证明,从而可知,由平面,可知,从而可知平面,即可证明.【题目详解】(1)取中点,连接,则平面即为所求平面.∵,,∴且,∴四边形是平行四边形,则,∵平面,平面,∴平面,∵,平面,平面,∴平面,∵平面,平面,且,∴平面平面,∵平面,∴平面,即.(2)由(1)四边形是平行四边形,则,,∵,∴三角形是边长为1的正三角形,∵,,∴,∴,即,∵平面,平面,∴,∵平面,平面,,∴平面,∵平面,∴.【题目点拨】本题考查了平面与平面平行的判定,考查了线面垂直的性质与判定,考查了学生的空间想象能力,属于中档题.19、(1);(2)直线AB过定点.【解题分析】
(1)先由题意得到直线PA的方程,联立直线与椭圆,得到A点坐标,再由弦长公式,即可求出结果;(2)先由题意,得到,直线的斜率必存在,设直线为,联立直线与椭圆方程,根据韦达定理,得到,再由,结合题意,求出,进而可得出结果.【题目详解】解:(1)把代入得:,所以(2)由题意可以,直线的斜率必存在,设直线为,有,所以,即直线AB过定点【题目点拨】本题主要考查椭圆的弦长,以及椭圆中的定点问题,熟记椭圆的标准方程以及椭圆的简单性质,即可求解,属于常考题型.20、(1)函数在区间上单调递减,在上单调递增;(2).【解题分析】
(1)函数求导,根据导函数的正负判断函数的单调性.(2)设,求导,根据函数的单调性求函数的最值,得到,再设函数根据函数的最值计算的最大值.【题目详解】(1)由已知得,令,则由得,由,得所以函数在区间上单调递减,在上单调递增.(2)若恒成立,即恒成立当时,恒成立,则;当时,为增函数,由得,故,.当时,取最小值.依题意有,即,,令,则,,所以当,取最大值,故当时,取最大值.综上,若,则的最大值为.【题目点拨】本题考查了函数的单调性,函数最值,恒成立问题,构造函数,综合性大,技巧强,计算量大,意在考查学生的综合应用能力.21、(1);(2)证明见解析【解题分析】
(1)函数在区间上是单调递增函数,,化为:,.利用二次函数的单调性即可得出.(2)在区间上有两个不相等的实数根,⇔方程在区间上有两个不相等的实数根.令,利用根的分布可得的范围,再利用根与系数关系可得:,
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 中国医师节精彩演讲稿(9篇)
- 中学生学习保证书
- 梦课件素材教学课件
- 弥勒金辰时代广场招商提案
- 影像科报告诊断质量评价标准
- 脑瘫案例课件教学课件
- 机车车辆空气调节系统 第3部分:能源效率 征求意见稿
- 护理课件讲解教学课件
- 2024西安医学院附属宝鸡医院护理人员招聘(8人)笔试备考题库及答案解析
- 余杭区六年级上学期语文期中检测试卷
- 肯布兰佳领导力发展战略课程
- 26个标点符号大全
- GB/T 9115.1-2000平面、突面对焊钢制管法兰
- GB/T 19811-2005在定义堆肥化中试条件下塑料材料崩解程度的测定
- 第5课 文化变革 美术发展 课件 【高效课堂+备课精研】 高一美术鲁美版美术鉴赏
- pep 三年级英语课本人物介绍PPT课
- 希沃优化大师操作培训
- 氧气吸入法(课堂)课件
- 智慧城市综合管线信息化解决方案智慧管网智慧管线课件
- 务工证明excel模板
- 国际商法说课课件
评论
0/150
提交评论