版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届浙江省湖州市长兴县、德清县、安吉县三县数学高二下期末教学质量检测试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.已知圆柱的轴截面的周长为,则圆柱体积的最大值为()A. B. C. D.2.已知函数,若,则A. B. C. D.3.已知曲线:,:,则下面结论正确的是()A.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线B.把上各点的横坐标伸长到原来的2倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线C.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向左平移个单位长度,得到曲线D.把上各点的横坐标缩短到原来的倍,纵坐标不变,再把得到的曲线向右平移个单位长度,得到曲线4.用四个数字1,2,3,4能写成()个没有重复数字的两位数.A.6 B.12 C.16 D.205.我国古代数学名著《九章算术》中“开立圆术”曰:置积尺数,以十六乘之,九而一,所得开立方除之,即立圆径.“开立圆术”相当于给出了已知球的体积,求其直径的一个近似公式,人们还用过一些类似的近似公式,根据判断,下列近似公式中最精确的一个是()A. B. C. D.6.三棱锥PABC中,PA⊥平面ABC,Q是BC边上的一个动点,且直线PQ与面ABC所成角的最大值为则该三棱锥外接球的表面积为()A. B. C. D.7.若曲线在点(0,n)处的切线方程x-y+1=0,则()A., B.,C., D.,8.在一次数学测试中,高一某班50名学生成绩的平均分为82,方差为8.2,则下列四个数中不可能是该班数学成绩的是()A.60 B.70 C.80 D.1009.如图过抛物线焦点的直线依次交抛物线与圆于A、B、C、D,则A.4 B.2 C.1 D.10.某工厂生产甲、乙、丙三种型号的产品,产品数量之比为,现用分层抽样的方法抽出容量为的样本,其中甲种产品有18件,则样本容量().A.70 B.90 C.40 D.6011.双曲线的左焦点,过点作倾斜角为的直线与圆相交的弦长为,则椭圆C的离心率为()A. B. C. D.12.我国古代典籍《周易》用“卦”描述万物的变化.每一“重卦”由从下到上排列的6个爻组成,爻分为阳爻“——”和阴爻“——”,如图就是一重卦.在所有重卦中随机取一重卦,则该重卦恰有3个阳爻的概率是A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.一个总体分为A,B两层,其个体数之比为4:1,用分层抽样方法从总体中抽取一个容量为10的样本.已知B层中甲、乙都被抽到的概率为,则总体中的个体数为_____.14.已知等比数列是函数的两个极值点,则____15.已知三次函数的图象如图所示,则函数的解析式是_______.16.记为虚数集,设,则下列类比所得的结论正确的是__________.①由,类比得②由,类比得③由,类比得④由,类比得三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)已知函数在处有极值.(1)求a,b的值;(2)求的单调区间.18.(12分)椭圆C:x2a2+y2(1)求椭圆C的方程(2)过F1作不垂直x轴的直线交椭圆于A,B两点弦AB的垂直平分线交x轴于M点,求证:AB19.(12分)《九章算术》是我国古代数学名著,它在几何学中的研究比西方早1千多年.在《九章算术》中,将底面为直角三角形,且侧棱垂直于底面的三棱柱称为堑堵,阳马指底面为矩形,一侧棱垂直于底面的四棱锥,鳖臑指四个面均为直角三角形的四面体.如图,在堑堵中,.(1)求证:四棱锥为阳马;并判断四面体是否为鳖臑,若是,请写出各个面的直角(要求写出结论).(2)若,当阳马体积最大时,求二面角的余弦值.20.(12分)设函数.(1)讨论的单调性;(2)证明:当时,.21.(12分)已知数列的前项和,且().(1)若数列是等比数列,求的值;(2)求数列的通项公式。22.(10分)某海湿地如图所示,A、B和C、D分别是以点O为中心在东西方向和南北方向设置的四个观测点,它们到点O的距离均为公里,实线PQST是一条观光长廊,其中,PQ段上的任意一点到观测点C的距离比到观测点D的距离都多8公里,QS段上的任意一点到中心点O的距离都相等,ST段上的任意一点到观测点A的距离比到观测点B的距离都多8公里,以O为原点,AB所在直线为x轴建立平面直角坐标系xOy.(1)求观光长廊PQST所在的曲线的方程;(2)在观光长廊的PQ段上,需建一服务站M,使其到观测点A的距离最近,问如何设置服务站M的位置?
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、B【解题分析】
分析:设圆柱的底面半径为r,高为h,则4r+2h=12,即2r+h=6,利用基本不等式,可求圆柱体积的最大值.详解:设圆柱的底面半径为r,高为h,则4r+2h=12,即2r+h=6,∴2r+h=r+r+h≥3,∴r2h≤∴V=πr2h≤8π,∴圆柱体积的最大值为8π,点睛:(1)本题主要考查圆柱的体积和基本不等式,意在考查学生对这些知识的掌握水平.(2)利用基本不等式求最值时,一定要注意“一正二定三相等”,三者缺一不可.2、D【解题分析】分析:求出函数的导数,由可求得.详解:函数的导数,由可得选D.点睛:本题考查函数的导函数的概念及应用,属基础题.3、C【解题分析】
由题意利用诱导公式得,根据函数的图象变换规律,得出结论.【题目详解】已知曲线,,∴把上各点的横坐标缩短到原来的倍,纵坐标不变,可得的图象,再把得到的曲线向左平移个单位长度,得到曲线的图象,故选C.【题目点拨】本题主要考查函数的图象变换规律,属于基础题.4、B【解题分析】
根据题意,由排列数公式计算即可得答案.【题目详解】根据题意,属于排列问题,则一共有种不同的取法.即共有12个没有重复数字的两位数.故选B.【题目点拨】本题考查排列数公式的应用,注意区分排列、组合、放回式抽取和不放回抽取的不同.5、B【解题分析】
利用球体的体积公式得,得出的表达式,再将的近似值代入可得出的最精确的表达式.【题目详解】由球体的体积公式得,,,,,,与最为接近,故选C.【题目点拨】本题考查球体的体积公式,解题的关键在于理解题中定义,考查分析问题和理解问题的能力,属于中等题.6、C【解题分析】
根据题意画出图形,结合图形找出△ABC的外接圆圆心与三棱锥P﹣ABC外接球的球心,求出外接球的半径,再计算它的表面积.【题目详解】三棱锥P﹣ABC中,PA⊥平面ABC,直线PQ与平面ABC所成角为θ,如图所示;则sinθ==,且sinθ的最大值是,∴(PQ)min=2,∴AQ的最小值是,即A到BC的距离为,∴AQ⊥BC,∵AB=2,在Rt△ABQ中可得,即可得BC=6;取△ABC的外接圆圆心为O′,作OO′∥PA,∴=2r,解得r=2;∴O′A=2,取H为PA的中点,∴OH=O′A=2,PH=,由勾股定理得OP=R==,∴三棱锥P﹣ABC的外接球的表面积是S=4πR2=4×=57π.故答案为C【题目点拨】本题主要考查正弦定理和线面位置关系,考查了几何体外接球的应用问题,意在考查学生对这些知识的掌握水平和分析推理能力.解题的关键求外接球的半径.7、A【解题分析】
根据函数的切线方程得到切点坐标以及切线斜率,再根据导数的几何意义列方程求解即可.【题目详解】曲线在点处的切线方程是,,则,即切点坐标为,切线斜率,曲线方程为,则函数的导数即,即,则,,故选A.【题目点拨】本题主要考查导数的几何意义的应用,属于中档题.应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1)已知切点求斜率,即求该点处的导数;(2)己知斜率求切点即解方程;(3)巳知切线过某点(不是切点)求切点,设出切点利用求解.8、A【解题分析】
假设分数为时,可知,可知分数不可能为,得到结果.【题目详解】当为该班某学生的成绩时,则,则与方差为矛盾不可能是该班成绩故选:【题目点拨】本题考查平均数、方差的相关运算,属于基础题.9、C【解题分析】
根据抛物线的几何意义转化,,再通过直线过焦点可知,即可得到答案.【题目详解】抛物线焦点为,,,,于是,故选C.【题目点拨】本题主要考查抛物线的几何意义,直线与抛物线的关系,意在考查学生的转化能力,计算能力及分析能力.10、B【解题分析】
用除以甲的频率,由此求得样本容量.【题目详解】甲的频率为,故,故选B.【题目点拨】本小题主要考查分层抽样的知识,考查频率与样本容量的计算,属于基础题.11、B【解题分析】
求出直线方程,利用过过点作倾斜角为的直线与圆相交的弦长为列出方程求解即可.【题目详解】双曲线的左焦点过点作倾斜角为的直线与圆相交的弦长为,可得:,可得:则双曲线的离心率为:故选:B.【题目点拨】本题考查双曲线的简单性质的应用,直线与圆的位置关系的应用,考查离心率的求法,考查计算能力.12、A【解题分析】
本题主要考查利用两个计数原理与排列组合计算古典概型问题,渗透了传统文化、数学计算等数学素养,“重卦”中每一爻有两种情况,基本事件计算是住店问题,该重卦恰有3个阳爻是相同元素的排列问题,利用直接法即可计算.【题目详解】由题知,每一爻有2种情况,一重卦的6爻有情况,其中6爻中恰有3个阳爻情况有,所以该重卦恰有3个阳爻的概率为=,故选A.【题目点拨】对利用排列组合计算古典概型问题,首先要分析元素是否可重复,其次要分析是排列问题还是组合问题.本题是重复元素的排列问题,所以基本事件的计算是“住店”问题,满足条件事件的计算是相同元素的排列问题即为组合问题.二、填空题:本题共4小题,每小题5分,共20分。13、40【解题分析】设B层中的个体数为,则,则总体中的个体数为14、或【解题分析】
求导后根据是方程的两根,由韦达定理,列出两根的关系式,再利用等比数列的性质求.【题目详解】因为,又是函数f(x)的两个极值点,则是方程的根,所以,所以解得或.故答案为-2或2.【题目点拨】本题考查了利用导数研究函数的极值点的问题,考查了韦达定理和等比数列的性质的运用,属于基础题.15、【解题分析】
待定系数法:设,利用图象上点坐标代入,与联立求解可得.【题目详解】设,由题知:,由图象知解得故答案为:【题目点拨】求函数解析式的四种方法:配凑法、换元法、待定系数法、解方程组法,解题时根据具体条件对应方法求解析式.16、③【解题分析】分析:在数集的扩展过程中,有些性质是可以传递的,但有些性质不能传递,因此,要判断类比的结果是否正确,关键是要在新的数集里进行论证,当然要想证明一个结论是错误的,也可直接举一个反例,要想得到本题的正确答案,可对3个结论逐一进行分析,不难解答.详解:A:由a•b∈R,不能类比得x•y∈I,如x=y=i,则xy=﹣1∉I,故①不正确;B:由a2≥1,不能类比得x2≥1.如x=i,则x2<1,故②不正确;C:由(a+b)2=a2+2ab+b2,可类比得(x+y)2=x2+2xy+y2.故③正确;D:若x,y∈I,当x=1+i,y=﹣i时,x+y>1,但x,y是两个虚数,不能比较大小.故④错误故4个结论中,C是正确的.故答案为:③.点睛:类比推理的一般步骤是:(1)找出两类事物之间的相似性或一致性;(2)用一类事物的性质去推测另一类事物的性质,得出一个明确的命题(猜想).但类比推理的结论不一定正确,还需要经过证明.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1),.(2)单调减区间是,单调增区间是.【解题分析】
(1)先对函数求导,得到,再由题意,列出方程组,求解,即可得出结果;(2)由(1)的结果,得到,对其求导,解对应的不等式,即可得出单调区间.【题目详解】解:(1)又在处有极值,即解得,.(2)由(1)可知,其定义域是,.由,得;由,得.函数的单调减区间是,单调增区间是.【题目点拨】本题主要考查由函数极值求参数,以及导数的方法求单调区间的问题,通常需要对函数求导,利用导数的方法求解即可,属于常考题型.18、(1)x2【解题分析】分析:⑴由椭圆过点1,32⑵设直线方程,联立椭圆方程,利用根与系数之间的关系,算长度详解:(1)∴(2)y=k(x+1)x|AB|=yAB令|点睛:本题主要考查了解析几何中椭圆的定值问题,在解答此类问题时要设点坐标和直线方程,利用根与系数之间的关系即可求出长度表达式,然后再求定值,需要一定的计算量,理解方法并能运用,本题有一定的难度.19、(1)证明见解析;是,,,,;(2).【解题分析】
(1)由堑堵的性质得:四边形是矩形,推导出,,从而BC⊥平面,由此能证明四棱锥为阳马,四面体是否为鳖臑;(2)阳马B﹣A1ACC1的体积:阳马的体积:,当且仅当时,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,利用向量法能求出当阳马体积最大时,二面角的余弦值.【题目详解】证明:(1)由堑堵的性质得:四边形是矩形,底面,平面,,又,,平面,面,四棱锥为阳马,四面体为鳖臑,四个面的直角分别是,,,.(2),由(1)知阳马的体积:,当且仅当时,,以为原点,为轴,为轴,为轴,建立空间直角坐标系,则,,,,,设平面的法向量,则,取,得,设平面的法向量,则,取,得,设当阳马体积最大时,二面角的平面角为,则,当阳马体积最大时,二面角的余弦值为.【题目点拨】本题考查棱锥的结构特征的运用,直线与平面垂直的性质,线面垂直的判定,二面角的向量求法,关键在于熟练掌握空间的线面、面面关系,二面角的向量求解方法,属于中档题.20、(1)见解析(2)见解析【解题分析】
(1)先求函数定义域,由导数大于0,得增区间;导数小于0,得减区间;(2)由题意可得即证lnx<x﹣1<xlnx.由(1)的单调性可得lnx<x﹣1;设F(x)=xlnx﹣x+1,x>1,求出单调性,即可得到x﹣1<xlnx成立;【题目详解】(1)由题设,的定义域为,,令,解得.当时,,单调递增;当时,,单调递减.(2)证明:当x∈(1,+∞)时,,即为lnx<x﹣1<xlnx.由(1)可得f(x)=lnx﹣x+1在(1,+∞)递减,可得f(x)<f(1)=0,即有lnx<x﹣1;设F(x)=xlnx﹣x+1,x>1,F′(x)=1+lnx﹣1=lnx,当x>1时,F′(x)>0,可得F(x)递增,即有F(x)>F(1)=0,即有xlnx>x﹣1,则原不等式成立;【题目点拨】本题考查导数的运用,考查利用导数求函数单调区间和极值、最值,考查不等式的证明,注意运用构造函数法,求出导数判断单调性,考查推理和运算能力,属于中档题.21、(1)1;(2)()【解题分析】分析:(1)由可得,∴a2=3,a3=7,依题意,得(3+t)2=(1+t)(7+t),解得t=1;(2)由(1),知当n≥2时,,即数列{an+1}是以2为首项,2为公比的等比数列,得,即可求通项.详解:(1)当时,由,得.当时,,即,∴,.依题意,得,解得,当时,,,即为等比数列成立,故实数的值为1;(2)由(1),知当时
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 2024高产品买卖协议模板汇编
- 高级顾问聘用协议样本2024
- 2024房贷未清情况下房产买卖协议
- 2024智能化建筑项目施工协议样本
- 2024年学校食堂新建工程施工协议
- 创新废纸收购项目协议2024年
- 育强国建设与义务教育公共服务治理的关系
- 车辆临时使用协议模板2024年
- 2024年产品买卖协议模板
- 玻璃瓶盖专用采购协议模板2024年
- 崔允漷《有效教学》心得体会课件
- 病案编码员资格证理论考试145题(附答案)
- 黄色卡通风名著导读稻草人PPT模板
- 铝单板施工劳务合同
- 办公室工作分工安排表
- 2023年副主任医师(副高)-耳鼻咽喉科学(副高)历年考试真题(易错与难点汇编)带答案
- 中药的外治膏药
- 小学数学专题讲座(课堂PPT)
- 煤矿职业卫生培训课件2023
- 传染病报告与管理培训
- 丹参培育讲义
评论
0/150
提交评论