浙江省杭州市杭州第二中学2024届数学高二第二学期期末学业水平测试试题含解析_第1页
浙江省杭州市杭州第二中学2024届数学高二第二学期期末学业水平测试试题含解析_第2页
浙江省杭州市杭州第二中学2024届数学高二第二学期期末学业水平测试试题含解析_第3页
浙江省杭州市杭州第二中学2024届数学高二第二学期期末学业水平测试试题含解析_第4页
浙江省杭州市杭州第二中学2024届数学高二第二学期期末学业水平测试试题含解析_第5页
已阅读5页,还剩12页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

浙江省杭州市杭州第二中学2024届数学高二第二学期期末学业水平测试试题注意事项1.考生要认真填写考场号和座位序号。2.试题所有答案必须填涂或书写在答题卡上,在试卷上作答无效。第一部分必须用2B铅笔作答;第二部分必须用黑色字迹的签字笔作答。3.考试结束后,考生须将试卷和答题卡放在桌面上,待监考员收回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.将本不同的书全部分给甲乙丙三人,每人至少一本,则不同的分法总数为()A. B. C. D.2.已知函数f(x)=ex(x-b)(b∈R).若存在x∈,使得f(x)+xf′(x)>0,则实数b的取值范围是()A. B.C. D.3.“m≠0”是“方程=m表示的曲线为双曲线”的A.充分而不必要条件 B.必要而不充分条件C.充分必要条件 D.既不充分也不必要条件4.已知定义域为正整数集的函数满足,则数列的前项和为()A. B. C. D.5.函数的图象向右平移个单位后所得的图象关于原点对称,则可以是()A. B. C. D.6.高三毕业时,甲,乙,丙等五位同学站成一排合影留念,在甲和乙相邻的条件下,丙和乙也相邻的概率为()A. B. C. D.7.设为两条不同的直线,为两个不同的平面,下列命题中正确的是()A.若,,,则 B.若,,,则C.若,,,则 D.若,,,则8.甲、乙两名游客来龙岩旅游,计划分别从“古田会址”、“冠豸山”、“龙崆洞”、“永福樱花园”四个旅游景点中任意选取3个景点参观游览,则两人选取的景点中有且仅有两个景点相同的概率为()A. B. C. D.9.在平行六面体ABCD-A1B1C1D1中,=x+2y+3z,则x+y+z=()A.1 B. C. D.10.下列函数中既是奇函数,又在区间上是单调递减的函数为()A. B. C. D.11.,若,则的值等于()A.B.C.D.12.如图,在下列四个正方体中,A,B为正方体的两个顶点,M,N,Q为所在棱的中点,则在这四个正方体中,直线AB与平面MNQ不平行的是()A. B.C. D.二、填空题:本题共4小题,每小题5分,共20分。13.如图,一个底面半径为的圆柱形量杯中装有适量的水,若放入一个半径为的实心铁球,水面高度恰好升高,则____________.14.已知某运动员每次投篮命中的概率都为.现采用随机模拟的方法估计该运动员三次投篮恰有两次命中的概率:先由计算器算出到之间取整数值的随机数,指定,,,表示命中,,,,,,表示不命中;再以每三个随机数为一组,代表三次投篮的结果.经随机模拟产生了组随机数:据此估计,该运动员三次投篮恰有两次命中的概率为__________.15.已知曲线在点处的切线为,则点的坐标为__________.16.已知函数,其中e是自然数对数的底数,若,则实数a的取值范围是_________。三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)设椭圆经过点,其离心率.(1)求椭圆的方程;(2)直线与椭圆交于、两点,且的面积为,求的值.18.(12分)某球员是当今国内最好的球员之一,在赛季常规赛中,场均得分达分。分球和分球命中率分别为和,罚球命中率为.一场比赛分为一、二、三、四节,在某场比赛中该球员每节出手投分的次数分别是,,,,每节出手投三分的次数分别是,,,,罚球次数分别是,,,(罚球一次命中记分)。(1)估计该球员在这场比赛中的得分(精确到整数);(2)求该球员这场比赛四节都能投中三分球的概率;(3)设该球员这场比赛中最后一节的得分为,求的分布列和数学期望。19.(12分)设为虚数单位,为正整数,(1)证明:;(2),利用(1)的结论计算.20.(12分)已知函数.(1)若在为增函数,求实数的取值范围;(2)当时,函数在的最小值为,求的值域.21.(12分)已知是正实数)的展开式的二项式系数之和为128,展开式中含项的系数为84.(1)求的值;(2)求的展开式中有理项的系数和.22.(10分)如图,在四棱锥中,平面平面,,,,,,.(Ⅰ)求证:平面;(Ⅱ)求直线与平面所成角的正弦值.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】分析:分两种情况:一人得本,另两个人各得本;一人得本,另两个人各得本,分别求出不同的分法即可得结果.详解:分两种情况:一人得本,另两个人各得本,有种分法,一人得本,另两个人各得本,有种分法,共有种分法,故选C.点睛:本题主要考查分类计数原理与分步计数原理及排列组合的应用,属于难题.有关排列组合的综合问题,往往是两个原理及排列组合问题交叉应用才能解决问题,解答这类问题理解题意很关键,一定多读题才能挖掘出隐含条件.解题过程中要首先分清“是分类还是分步”、“是排列还是组合”,在应用分类计数加法原理讨论时,既不能重复交叉讨论又不能遗漏,这样才能提高准确率.2、A【解题分析】,若存在,使得,即存在,使得,即在恒成立,令,则,所以在上单调递增,所以,故,所以的取值范围是,故选A.3、C【解题分析】

根据双曲线的标准方程进行判断.【题目详解】时,方程表示两条直线,时,方程可化为,时表示焦点在轴上的双曲线,时表示焦点在轴上的双曲线.故选C.【题目点拨】本题考查双曲线的标准方程,考查充分必要条件,解题关键是掌握双曲线的标准方程.4、A【解题分析】分析:通过求出,再利用等差数列的求和公式即可求得答案.详解:当时,有;当时,有;当时,有;…...,.故答案为:A.点睛:本题主要考查了数列求和以及通项公式的求法,考查计算能力与分析能力,属于中档题.5、B【解题分析】

求出函数图象平移后的函数解析式,再利用函数图象关于原点对称,即,求出,比较可得.【题目详解】函数的图象向右平移个单位后得到.此函数图象关于原点对称,所以.所以.当时,.故选B.【题目点拨】由的图象,利用图象变换作函数的图象,要特别注意:当周期变换和相位变换的先后顺序不同时,原图象沿轴的伸缩量的区别.先平移变换再周期变换(伸缩变换),平移的量是个单位;而先周期变换(伸缩变换)再平移变换,平移的量是个单位.6、B【解题分析】

记事件甲乙相邻,事件乙丙相邻,利用排列组合思想以及古典概型的概率公式计算出和,再利用条件概率公式可计算出所求事件的概率.【题目详解】记事件甲乙相邻,事件乙丙相邻,则事件乙和甲丙都相邻,所求事件为,甲乙相邻,则将甲乙两人捆绑,与其他三位同学形成四个元素,排法种数为,由古典概型的概率公式可得.乙和甲丙都相邻,则将甲乙丙三人捆绑,且乙位置正中间,与其他两位同学形成三个元素,排法种数为,由古典概型的概率公式可得,由条件概率公式可得,故选B.【题目点拨】本题考查条件概率的计算,解这类问题时,要弄清各事件事件的关系,利用排列组合思想以及古典概型的概率公式计算相应事件的概率,并灵活利用条件概率公式计算出所求事件的概率,考查计算能力,属于中等题.7、C【解题分析】

通过作图的方法,可以逐一排除错误选项.【题目详解】如图,相交,故A错误如图,相交,故B错误D.如图,相交,故D错误故选C.【题目点拨】本题考查直线和平面之间的位置关系,属于基础题.8、A【解题分析】

先求出两人从四个旅游景点中任意选取3个景点的所有选法,再求出两人选取的景点中有且仅有两个景点相同的选法,然后可求出对应概率.【题目详解】甲、乙两人从四个旅游景点中任意选取3个景点参观游览,总共有种选法,两人选取的景点中有且仅有两个景点相同,总共有,则两人选取的景点中有且仅有两个景点相同的概率为.故选A.【题目点拨】本题考查了概率的求法,考查了排列组合等知识,考查了计算能力,属于中档题.9、B【解题分析】

先根据题意,易知,再分别求得的值,然后求得答案即可.【题目详解】在平行六面体中,所以解得所以故选B【题目点拨】本题主要考查了向量的线性运算,属于较为基础题.10、B【解题分析】

由题意得,对于函数和函数都是非奇非偶函数,排除A、C.又函数在区间上单调递减,在区间单调递增,排除D,故选B.11、D【解题分析】试题分析:考点:函数求导数12、A【解题分析】

利用线面平行判定定理可知B、C、D均不满足题意,从而可得答案.【题目详解】对于B项,如图所示,连接CD,因为AB∥CD,M,Q分别是所在棱的中点,所以MQ∥CD,所以AB∥MQ,又AB⊄平面MNQ,MQ⊂平面MNQ,所以AB∥平面MNQ,同理可证,C,D项中均有AB∥平面MNQ.故选:A.【题目点拨】本题考查空间中线面平行的判定定理,利用三角形中位线定理是解决本题的关键,属于中档题.二、填空题:本题共4小题,每小题5分,共20分。13、【解题分析】试题分析:由题可知,小球的体积等于水面上升的的体积,因此有,化简可得,;考点:简单几何体的体积公式14、0.25【解题分析】由题意知模拟三次投篮的结果,经随机模拟产生了如下20组随机数,在20组随机数中表示三次投篮恰有两次命中的有:191、271、932、812、393.共5组随机数,∴所求概率为.答案为:0.25.15、.【解题分析】分析:设切点坐标为,求得,利用且可得结果.详解:设切点坐标为,由得,,,即,故答案为.点睛:应用导数的几何意义求切点处切线的斜率,主要体现在以下几个方面:(1)已知切点求斜率,即求该点处的导数;(2)己知斜率求切点即解方程;(3)巳知切线过某点(不是切点)求切点,设出切点利用求解.16、【解题分析】因为,所以函数是奇函数,因为,所以数在上单调递增,又,即,所以,即,解得,故实数的取值范围为.点睛:解函数不等式时,首先根据函数的性质把不等式转化为的形式,然后根据函数的单调性去掉“”,转化为具体的不等式(组),此时要注意与的取值应在函数的定义域内.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2).【解题分析】分析:(1)由经过点P,得,由离心率为得=,再根据a2=b2+c2联立解方程组即可;(2)联立直线方程与椭圆方程消y,得,易知判别式△>1,设A(x1,y1),B(x2,y2),弦长公式及点到直线的距离公式可表示出△PAB的面积,令其为,即可解出m值,验证是否满足△>1.详解:(1)解:由已知解得,,∴椭圆的方程为.(2)解:由得:由得:设,,则,∴又到的距离为,∴即,解得:.符合,故.点睛:本题主要考查直线与圆锥曲线位置关系,所使用方法为韦达定理法:因直线的方程是一次的,圆锥曲线的方程是二次的,故直线与圆锥曲线的问题常转化为方程组关系问题,最终转化为一元二次方程问题,故用韦达定理及判别式是解决圆锥曲线问题的重点方法之一,尤其是弦中点问题,弦长问题,可用韦达定理直接解决,但应注意不要忽视判别式的作用.18、(1)分;(2);(3)见解析.【解题分析】

(1)分别估算分得分、分得分和罚球得分,加和得到结果;(2)分别计算各节能投中分球的概率,相乘得到所求概率;(3)确定所有可能取值为,分别计算每个取值对应的概率,从而得到分布列;利用数学期望计算公式求得期望.【题目详解】(1)估计该球员分得分为:分;分得分为:分;罚球得分为:分估计该球员在这场比赛中的得分为:分(2)第一节和第三节能投中分球的概率为:第二节和第四节能投中分球的概率为:四节都能投中分球的概率为:(3)由题意可知,所有可能的取值为:则;;;;的分布列为:数学期望【题目点拨】本题考查概率分布的综合应用问题,涉及到积事件概率的求解、二项分布概率的应用、离散型随机变量的分布列和数学期望的求解,考查学生的运算和求解能力,属于常考题型.19、(1)证明见解析.(2).【解题分析】分析:(1)利用数学归纳法先证明,先证明当时成立,假设当时,命题成立,只需证明当时,命题也成立,证明过程注意三角函数和差公式的应用;(2)由(1)结论得,结合诱导公式与特殊角的三角函数可得结果.详解:(1)1°当时,左边,右边,所以命题成立2°假设当时,命题成立,即,则当时,所以,当时,命题也成立综上所述,(为正整数)成立(2)由(1)结论得点睛:本题主要考查复数的运算、诱导公式、特殊角的三角函数、归纳推理的应用以及数学归纳法证明,属于中档题.利用数学归纳法证明结论的步骤是:(1)验证时结论成立;(2)假设时结论正确,证明时结论正确(证明过程一定要用假设结论);(3)得出结论.20、(1).(2).【解题分析】分析:(1)原问题等价于在上恒成立,据此可得实数的取值范围是;(2)由函数的解析式二次求导可得在上是增函数,则存在唯一实数,使得,据此可得的最小值构造函数,讨论可得其值域为.详解:(1)在上恒成立,设则在为增函数,.(2),可得在上是增函数,又,,则存在唯一实数,使得即,则有在上递减;在上递增;故当时,有最小值则的最小值,又,令,求导得,故在上递增,而,故可等价转化为,故求的最小值的值域,可转化为:求在上的值域.易得在上为减函数,则其值域为.点睛:导数是研究函数的单调性、极值(最值)最有效的工具,而函数是高中数学中重要的知识点,所以在历届高考中,对导数的应用的考查都非常突出,本专题在高考中的命题方向及命题角度从高考来看,对导数的应用的考查主要从以下几个角度进行:(1)考查导数的几何意义,往往与解析几何、微积分相联系.(2)利用导数求函数的单调区间,判断单调性;已知单调性,求参数.(3)利用导数求函数的最值(极值),解决生活中的优化问题.(4)考查数形结合思想的应用.21、(1)2,7;(2)1.【解题分析】

(1)由二项式系数和求得,然后再根据展开式中含项的系数为84求得.(2)由(1)先求出二项式中的有理项,结合题意可得

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论