




版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领
文档简介
2024届云南省景东一中数学高二下期末调研模拟试题考生请注意:1.答题前请将考场、试室号、座位号、考生号、姓名写在试卷密封线内,不得在试卷上作任何标记。2.第一部分选择题每小题选出答案后,需将答案写在试卷指定的括号内,第二部分非选择题答案写在试卷题目指定的位置上。3.考生必须保证答题卡的整洁。考试结束后,请将本试卷和答题卡一并交回。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设函数的定义域,函数y=ln(1-x)的定义域为,则A.(1,2) B.(1,2] C.(-2,1) D.[-2,1)2.已知某人每天早晨乘坐的某一班公共汽车的准时到站的概率为,则他在3天乘车中,此班车恰有2天准时到站的概率为()A. B. C. D.3.利用独立性检验来考虑两个分类变量X与Y是否有关系时,通过查阅下表来确定“X和Y有关系”的可信度.如果k>5.024,那么就有把握认为“X和Y有关系”的百分比为()P(K2>k0)0.500.400.250.150.100.050.0250.0100.0050.001k00.4550.7081.3232.0722.7063.8415.0246.6357.87910.83A.25% B.95%C.5% D.97.5%4.函数f(x)=sin(ωx+πA.关于直线x=π12对称 B.关于直线C.关于点π12,0对称 D.5.“”是“方程表示双曲线”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件6.如图程序框图的算法思路源于我国古代数学名著《九章算术》中的“更相减损术”,执行该程序框图,若输入的,分别为63,98,则输出的()A.9 B.3 C.7 D.147.若,则“”是“”的()A.充分不必要条件 B.必要不充分条件C.充分必要条件 D.既不充分也不必要条件8.函数导数是()A. B. C. D.9.已知定义在上的函数满足:函数的图象关于直线对称,且当成立(是函数的导函数),若,,,则的大小关系是()A. B. C. D.10.过点且与直线垂直的直线方程是()A. B.C. D.11.已知,其中、是实数,是虚数单位,则复数的共轭复数对应的点位于()A.第一象限 B.第二象限 C.第三象限 D.第四象限12.已知双曲线C:的离心率为2,左右焦点分别为,点A在双曲线C上,若的周长为10a,则面积为()A. B. C. D.二、填空题:本题共4小题,每小题5分,共20分。13.某工厂为了对新研发的一种产品进行合理定价,将该产品按事先拟定的价格进行试销,得到如下数据:单价(元)456789销量(件)908483807568由表中数据,求得线性回归方程为,则实数______.14.将极坐标化成直角坐标为_________.15.若x,y满足约束条件x+y-3≥0x-2y≤0,则函数z=x+2y的最小值为__________16.在长方体中,,,点为线段的中点,点为对角线上的动点,点为底面上的动点,则的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)食品安全问题越来越引起人们的重视,农药、化肥的滥用对人民群众的健康带来一定的危害,为了给消费者带来放心的蔬菜,某农村合作社每年投入200万元,搭建了甲、乙两个无公害蔬菜大棚,每个大棚至少要投入20万元,其中甲大棚种西红柿,乙大棚种黄瓜,根据以往的种菜经验,发现种西红柿的年收益P、种黄瓜的年收益Q与投入a(单位:万元)满足P=80++120.设甲大棚的投入为x(单位:万元),每年两个大棚的总收益为f(x)(单位:万元).(1)求f(50)的值;(2)试问如何安排甲、乙两个大棚的投入,才能使总收益f(x)最大?18.(12分)证明:当时,.19.(12分)在直角坐标系中,曲线的参数方程为,(为参数).以坐标原点为极点,轴正半轴为极轴建立极坐标系,直线的极坐标方程为.(1)求和的直角坐标方程;(2)已知直线与轴交于点,且与曲线交于,两点,求的值.20.(12分)已知,(1)求的值;(2)若且,求的值;(3)求证:.21.(12分)某兴趣小组欲研究某地区昼夜温差大小与患感冒就诊人数之间的关系,他们分别到气象局与某医院抄录了1到5月份每月10号的昼夜温差情况与因患感冒而就诊的人数,得到如下资料:日期1月10日2月10日3月10日4月10日5月10日昼夜温差81013129就诊人数(个)1825282617该兴趣小组确定的研究方案是:先从这5组数据中选取一组,用剩下的4组数据求线性回归方程,再用选取的一组数据进行检验.(1)若选取的是1月的一组数据,请根据2至5月份的数据.求出关于的线性回归方程.(2)若由线性回归方程得到的估计数据与所选出的检验数据的误差不超过2,则认为得到的线性回归方程是理想的,试判断该小组所得的线性回归方程是否理想?如果不理想,请说明理由,如果理想,试预测昼夜温差为时,因感冒而就诊的人数约为多少?参考公式:,.22.(10分)已知复数,(其中是虚数单位).(1)当为实数时,求实数的值;(2)当时,求的取值范围.
参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、D【解题分析】由得,由得,故,选D.【名师点睛】集合的交、并、补运算问题,应先把集合化简再计算,常常借助数轴或韦恩图进行处理.2、B【解题分析】由题意,恰有2天准时到站的概率为,故选择B。3、D【解题分析】∵k>5.024,而在观测值表中对应于5.024的是0.025,∴有1-0.025=97.5%的把握认为“X和Y有关系”,
故选D.4、B【解题分析】
求出函数的解析式,然后判断对称中心或对称轴即可.【题目详解】函数f(x)=2sin(ωx+π3)(ω>0)的最小正周期为π2,可得ω函数f(x)=2sin(4x+π由4x+π3=kπ+π2,可得x=kπ当k=0时,函数的对称轴为:x=π故选:B.【题目点拨】本题考查三角函数的性质的应用,周期的求法,考查计算能力,是基础题5、A【解题分析】
若方程表示双曲线,则有,再根据充分条件和必要条件的定义即可判断.【题目详解】因为方程表示双曲线等价于,所以“”,是“方程表示双曲线”的充分不必要条件,故选A.【题目点拨】本题考查充分条件与必要条件以及双曲线的性质,属于基础题.6、C【解题分析】由,不满足,则变为,由,则变为,由,则,由,则,由,则,由,则,由,退出循环,则输出的值为,故选C.7、A【解题分析】
本题根据基本不等式,结合选项,判断得出充分性成立,利用“特殊值法”,通过特取的值,推出矛盾,确定必要性不成立.题目有一定难度,注重重要知识、基础知识、逻辑推理能力的考查.【题目详解】当时,,则当时,有,解得,充分性成立;当时,满足,但此时,必要性不成立,综上所述,“”是“”的充分不必要条件.【题目点拨】易出现的错误有,一是基本不等式掌握不熟,导致判断失误;二是不能灵活的应用“赋值法”,通过特取的值,从假设情况下推出合理结果或矛盾结果.8、A【解题分析】
根据导数的基本公式和运算法则求导即可.【题目详解】,故选:A.【题目点拨】本题考查了导数的基本公式和运算法则,属于基础题.9、A【解题分析】
由导数性质推导出当x∈(﹣∞,0)或x∈(0,+∞)时,函数y=xf(x)单调递减.由此能求出结果.【题目详解】∵函数的图象关于直线对称,∴关于轴对称,∴函数为奇函数.因为,∴当时,,函数单调递减,当时,函数单调递减.,,,,故选A【题目点拨】利用导数解抽象函数不等式,实质是利用导数研究对应函数单调性,而对应函数需要构造.构造辅助函数常根据导数法则进行:如构造,构造,构造,构造等10、B【解题分析】
先求出所求直线的斜率,再写出直线的点斜式方程化简整理即得解.【题目详解】由题得直线的斜率为所以直线的方程为,即:故选B【题目点拨】本题主要考查相互垂直的直线的斜率关系,考查直线方程的求法,意在考查学生对这些知识的理解掌握水平,属于基础题.11、D【解题分析】
由得,根据复数相等求出的值,从而可得复数的共轭复数,得到答案.【题目详解】由有,其中、是实数.所以,解得,所以则复数的共轭复数为,则在复平面内对应的点为.所以复数的共轭复数对应的点位于第四象限.故选:D【题目点拨】本题考查复数的运算和根据复数相等求参数,考查复数的概念,属于基础题.12、B【解题分析】点在双曲线上,不妨设点在双曲线右支上,所以,又的周长为.得.解得.双曲线的离心率为,所以,得.所以.所以,所以为等腰三角形.边上的高为.的面积为.故选B.二、填空题:本题共4小题,每小题5分,共20分。13、106【解题分析】
求出样本中心坐标,代入回归方程即可求出值.【题目详解】解:,,将代入回归方程得,解得.故答案为:.【题目点拨】本题考查回归方程问题,属于基础题.14、【解题分析】
试题分析:由题意得,,所以直角坐标为故答案为:考点:极坐标与直角坐标的互化.15、5.【解题分析】分析:作出约束条件所表示的平面区域,结合图象,得到目标函数经过点B时,目标函数取得最小值,即可求解.详解:作出约束条件所表示的平面区域,如图所示,目标函数z=x+2y,则y=-1由图象可知当取可行域内点B时,目标函数取得最小值,由x+y-3=0x-2y=0,解得B(1,2)此时函数的最小值为z=1+2×2=5.点睛:本题主要考查简单线性规划.解决此类问题的关键是正确画出不等式组表示的可行域,将目标函数赋予几何意义;求目标函数的最值的一般步骤为:一画二移三求.其关键是准确作出可行域,理解目标函数的意义.常见的目标函数有:(1)截距型:形如z=ax+by.求这类目标函数的最值常将函数z=ax+by转化为直线的斜截式:y=-abx+zb,通过求直线的截距zb的最值间接求出z的最值;(2)16、【解题分析】
画出图形,利用折叠与展开法则使和在同一个平面,转化折线段为直线段距离最小,即可求得的最小值.【题目详解】当的最小值,即到底面的距离的最小值与的最小值之和.为底面上的动点,当是在底面上的射影,即是最小值.展开三角形与三角形在同一个平面上,如图:长方体中,,长方体体对角线长为:在中:故故过点作,即为最小值.在,故答案为:.【题目点拨】解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些条件发生了变化,哪些条件没有发生变化.这些未变化的已知条件都是我们分析问题和解决问题的依据.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1);(2)甲大棚万元,乙大棚万元时,总收益最大,且最大收益为万元.【解题分析】试题分析:(1)当甲大棚投入万元,则乙大棚投入万元,此时直接计算即可;(2)列出总收益的函数式得,令,换元将函数转换为关于的二次函数,由二次函数知识可求其最大值及相应的值.试题解析:(1)∵甲大棚投入50万元,则乙大棚投入150万元,∴(2),依题得,即,故.令,则,当时,即时,,∴甲大棚投入128万元,乙大棚投入72万元时,总收益最大,且最大收益为282万元.考点:1.函数建模;2.二次函数.18、见解析【解题分析】分析:(1)记,则,分x∈与x∈两类讨论,可证得当时,,即记,同理可证当时,,二者结合即可证得结论;详解:记记,则,当x∈时,F′(x)>0,F(x)单调递增;当x∈时,F′(x)<0,F(x)单调递减.又F(0)=0,F(1)>0,所以当x∈[0,1]时,F(x)≥0,即sinx≥x.记,则.当时,H′(x)≤0,H(x)单调递减.所以H(x)≤H(0)=0,即.综上,,.点睛:本题考查不等式的证明,突出考查利用导数研究函数的单调性及函数恒成立问题,考查分类讨论思想与等价转化思想的综合应用,属于难题.19、(1)直线的直角坐标方程为,的普通方程;(2).【解题分析】
(1)利用将直线的极坐标方程转化为直角坐标方程.利用将曲线的参数方程转化为直角坐标方程.(2)先求得点的坐标,写出直线的参数方程并代入的直角坐标方程,写出韦达定理,利用直线参数的几何意义求解出所要求的表达式的值.【题目详解】解:(1)因为直线的极坐标方程为,所以直线的直角坐标方程为.因为曲线的参数方程为(为参数),所以曲线的普通方程.(2)由题可知,所以直线的参数方程为,(为参数),代入,得.设,两点所对应的参数分别为,,则,..【题目点拨】本小题主要考查极坐标方程、参数方程转化为直角坐标方程,考查直线参数方程的几何意义,属于中档题.20、(1)(2)(3)见解析【解题分析】分析:(1)令,根据可求的值;(2)由,解得可求的值;(3)利用二项展开式及放缩法即可证明.:详解:(1)令,则=0,又所以(2)由,解得,所以(3)点睛:本题主要考查二项式定理的应用,二项展开式的通项公式,二项式系数的性质,属于中档题.21、(1);(2)理想,13人.【解题分析】
(1)由题意计算平均数和回归系数,写出线性回归方程;(2)利用回归方程
温馨提示
- 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
- 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
- 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
- 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
- 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
- 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
- 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。
最新文档
- 商业秘密保护与企业竞争力提升
- 2025年放射性物质运输与储存安全协议
- 如何防范数据安全漏洞
- 人防工程施工中的劳动保障与工人健康管理
- 人防工程施工中的环境影响评估与控制
- 文化艺术与社会发展的互动关系
- 2025年秋季学期江苏省南京市七年级下学期期末数学试卷(含逻辑推理2025年应用题)
- T-WHCIA 1003-2023 全过程工程咨询服务管理标准
- 师风师德演讲培训81
- 牦牛产业链中冷链物流的创新模式
- 劳动教育智慧树知到期末考试答案章节答案2024年上海杉达学院
- 2023年南平市高校毕业生服务社区计划招募考试真题
- HG-T 4062-2023 波形挡边输送带
- 西安市灞桥区2024年公开招聘事业单位工作人员历年公开引进高层次人才和急需紧缺人才笔试参考题库(共500题)答案详解版
- 广东省课程思政示范高职院校申报书
- 提水试验过程及数据处理
- 24春国家开放大学《公共关系学》形考任务1-4参考答案
- 精神障碍者民事行为能力评定指南
- 游泳池安全保障制度和措施范本
- 2024届高考语文复习诗歌教考融合之《登高》(含解析)
- 中南地区工程建设标准设计建筑图集 13ZJ301 建筑无障碍设施
评论
0/150
提交评论