2024届滨州市重点中学高二数学第二学期期末达标检测模拟试题含解析_第1页
2024届滨州市重点中学高二数学第二学期期末达标检测模拟试题含解析_第2页
2024届滨州市重点中学高二数学第二学期期末达标检测模拟试题含解析_第3页
2024届滨州市重点中学高二数学第二学期期末达标检测模拟试题含解析_第4页
2024届滨州市重点中学高二数学第二学期期末达标检测模拟试题含解析_第5页
已阅读5页,还剩13页未读 继续免费阅读

下载本文档

版权说明:本文档由用户提供并上传,收益归属内容提供方,若内容存在侵权,请进行举报或认领

文档简介

2024届滨州市重点中学高二数学第二学期期末达标检测模拟试题请考生注意:1.请用2B铅笔将选择题答案涂填在答题纸相应位置上,请用0.5毫米及以上黑色字迹的钢笔或签字笔将主观题的答案写在答题纸相应的答题区内。写在试题卷、草稿纸上均无效。2.答题前,认真阅读答题纸上的《注意事项》,按规定答题。一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1.设a∈R,则“a=3”是“直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行”的A.充分不必要 B.必要不充分 C.充要条件 D.既不充分也不必要2.设为两个随机事件,给出以下命题:(1)若为互斥事件,且,,则;(2)若,,,则为相互独立事件;(3)若,,,则为相互独立事件;(4)若,,,则为相互独立事件;(5)若,,,则为相互独立事件;其中正确命题的个数为()A.1 B.2 C.3 D.43.已知函数,的值域是,则实数的取值范围是()A. B. C. D.4.在等比数列中,“是方程的两根”是“”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件5.若,则()A. B. C. D.6.已知直线经过抛物线的焦点,与抛物线相交于,两点,为坐标原点,则的面积为()A. B. C.4 D.17.已知抛物线上一动点到其准线与到点M(0,4)的距离之和的最小值为,F是抛物线的焦点,是坐标原点,则的内切圆半径为A. B. C. D.8.设等差数列{an}满足3a8=5a15,且A.S23 B.S24 C.S9.“a>0”是“|a|>0”的()A.充分不必要条件 B.必要不充分条件C.充要条件 D.既不充分也不必要条件10.是第四象限角,,,则()A. B. C. D.11.己知一组样本数据恰好构成公差为5的等差数列,则这组数据的方差为A.25 B.50 C.125 D.25012.若满足约束条件,则的最大值为()A.9 B.5 C.11 D.3二、填空题:本题共4小题,每小题5分,共20分。13.若复数()为纯虚数,则____.14.如图,在半径为3的球面上有A、B、C三点,,,球心O到平面ABC的距离是,则B、C两点的球面距离是______.15.乒乓球赛规定:一局比赛,双方比分在10平前,一方连续发球2次后,对方再连续发球2次,依次轮换,每次发球,胜方得1分,负方得0分.设在甲、乙的比赛中,每次发球,甲发球得1分的概率为,乙发球得1分的概率为,各次发球的胜负结果相互独立,甲、乙的一局比赛中,甲先发球.则开始第4次发球时,甲、乙的比分为1比2的概率为________.16.在长方体中,,,点为线段的中点,点为对角线上的动点,点为底面上的动点,则的最小值为______.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17.(12分)全民健身倡导全民做到每天参加一次以上的体育健身活动,旨在全面提高国民体质和健康水平.某市的体育部门对某小区的4000人进行了“运动参与度”统计评分(满分100分),得到了如下的频率分布直方图:(1)求这4000人的“运动参与度”的平均得分(同一组中数据用该组区间中点作代表);(2)由直方图可认为这4000人的“运动参与度”的得分服从正态分布,其中,分别取平均得分和方差,那么选取的4000人中“运动参与度”得分超过84.81分(含84.81分)的人数估计有多少人?(3)如果用这4000人得分的情况来估计全市所有人的得分情况,现从全市随机抽取4人,记“运动参与度”的得分不超过84.81分的人数为,求.(精确到0.001)附:①,;②,则,;③.18.(12分)某校选择高一年级三个班进行为期二年的教学改革试验,为此需要为这三个班各购买某种设备1台.经市场调研,该种设备有甲乙两型产品,甲型价格是3000元/台,乙型价格是2000元/台,这两型产品使用寿命都至少是一年,甲型产品使用寿命低于2年的概率是,乙型产品使用寿命低于2年的概率是.若某班设备在试验期内使用寿命到期,则需要再购买乙型产品更换.(1)若该校购买甲型2台,乙型1台,求试验期内购买该种设备总费用恰好是10000元的概率;(2)该校有购买该种设备的两种方案,方案:购买甲型3台;方案:购买甲型2台乙型1台.若根据2年试验期内购买该设备总费用的期望值决定选择哪种方案,你认为该校应该选择哪种方案?19.(12分)已知函数f(x)=m(1)当n-m=1时,求函数f(x)的单调区间;(2)若函数g(x)=f(x)-3m2x2的两个零点分别为x1,x2(20.(12分)某毕业生参加人才招聘会,分别向甲、乙、丙三个公司投递了个人简历.假定该毕业生得到甲公司面试的概率为,得到乙、丙两公司面试的概率均为,且三个公司是否让其面试是相互独立的.记X为该毕业生得到面试的公司个数.若,求随机变量X的分布列与均值.21.(12分)(1)求函数的最大值;(2)若函数有两个零点,求实数a的取值范围.22.(10分)某市教育部门为了了解全市高一学生的身高发育情况,从本市全体高一学生中随机抽取了100人的身高数据进行统计分析。经数据处理后,得到了如下图1所示的频事分布直方图,并发现这100名学生中,身不低于1.69米的学生只有16名,其身高茎叶图如下图2所示,用样本的身高频率估计该市高一学生的身高概率.(I)求该市高一学生身高高于1.70米的概率,并求图1中的值.(II)若从该市高一学生中随机选取3名学生,记为身高在的学生人数,求的分布列和数学期望;(Ⅲ)若变量满足且,则称变量满足近似于正态分布的概率分布.如果该市高一学生的身高满足近似于正态分布的概率分布,则认为该市高一学生的身高发育总体是正常的.试判断该市高一学生的身高发育总体是否正常,并说明理由.

参考答案一、选择题:本题共12小题,每小题5分,共60分。在每小题给出的四个选项中,只有一项是符合题目要求的。1、C【解题分析】

先由两直线平行解得a的值,再通过检验是否重合可得a=3,从而得两命题的关系.【题目详解】若直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行,可得:aa-1=2×3,解得当a=3时,两直线分别为:3x+2y+9=0和3x+2y+4=0,满足平行;当a=-2时,两直线分别为:x-y+3=0和x-y+3=0,两直线重合;所以“a=3”是“直线ax+2y+3a=0和直线3x+(a-1)y=a-7平行”的充要条件.故选C.【题目点拨】本题主要考查了两直线平行求参数值的问题。已知两直线的一般方程判定两直线平行的一般方法为:已知l1:A1x+2、D【解题分析】

根据互斥事件的加法公式,易判断(1)的正误;根据相互对立事件的概率和为1,结合相互独立事件的概率满足,可判断(2)、(3)、(4)、(5)的正误.【题目详解】若为互斥事件,且,则,故(1)正确;若则由相互独立事件乘法公式知为相互独立事件,故(2)正确;若,则由对立事件概率计算公式和相互独立事件乘法公式知为相互独立事件,故(3)正确;若,当为相互独立事件时,故(4)错误;若则由对立事件概率计算公式和相互独立事件乘法公式知为相互独立事件,故(5)正确.故选D.【题目点拨】本题考查互斥事件、对立事件和独立事件的概率,属于基础题.3、B【解题分析】分析:当x≤2时,检验满足f(x)≥1.当x>2时,分类讨论a的范围,依据函数的单调性,求得a的范围,综合可得结论.详解:由于函数f(x)=(a>0且a≠1)的值域是[1,+∞),故当x≤2时,满足f(x)=6﹣x≥1.①若a>1,f(x)=3+logax在它的定义域上单调递增,当x>2时,由f(x)=3+logax≥1,∴logax≥1,∴loga2≥1,∴1<a≤2.②若0<a<1,f(x)=3+logax在它的定义域上单调递减,f(x)=3+logax<3+loga2<3,不满足f(x)的值域是[1,+∞).综上可得,1<a≤2,故答案为:B点睛:本题主要考查分段函数的应用,对数函数的单调性和特殊点,属于中档题.分段函数的值域是将各段的值域并到一起,分段函数的定义域是将各段的定义域并到一起,分段函数的最值,先取每段的最值,再将两段的最值进行比较,最终取两者较大或者较小的.4、A【解题分析】

由韦达定理可得a4+a12=﹣3,a4•a12=1,得a4和a12均为负值,由等比数列的性质可得.【题目详解】∵a4,a12是方程x2+3x+1=0的两根,∴a4+a12=﹣3,a4•a12=1,∴a4和a12均为负值,由等比数列的性质可知a8为负值,且a82=a4•a12=1,∴a8=﹣1,故“a4,a12是方程x2+3x+1=0的两根”是“a8=±1”的充分不必要条件.故选A.【题目点拨】本题考查等比数列的性质和韦达定理,注意等比数列隔项同号,属于基础题.5、D【解题分析】

结合函数、不等式及绝对值含义判断即可【题目详解】对,若,则,但推不出,故错;对,若,设,则函数为增函数,则,故错;对,若,但推不出,故错误;对,设,则函数为增函数,当时,,则,故正确;故选:D【题目点拨】本题考查由指数、对数、幂函数及绝对值的含义比大小,属于基础题6、B【解题分析】

求出抛物线的焦点坐标可得直线方程,与抛物线方程联立,利用弦长公式求出,利用点到直线距离公式求得点到直线的距离,再由三角形面积公式可得结果.【题目详解】因为抛物线的焦点为,所以代入直线方程得,即,所以直线方程为,与抛物线方程联立得,所以弦长,又点到直线的距离为,所以的面积为,故选B.【题目点拨】本题主要考查抛物线的方程与简单性质,考查了弦长公式、点到直线的距离公式与三角形面积公式,意在考查计算能力以及综合应用所学知识解答问题的能力,属于中档题.7、D【解题分析】

由抛物线的定义将到准线的距离转化为到焦点的距离,到其准线与到点M(0,4)的距离之和的最小值,也即为最小,当三点共线时取最小值.所以,解得,由内切圆的面积公式,解得.故选D.8、C【解题分析】因a8=a1+7d,a15=a1+14d,故由题设3a8=5a159、A【解题分析】试题分析:本题主要是命题关系的理解,结合|a|>0就是{a|a≠0},利用充要条件的概念与集合的关系即可判断.解:∵a>0⇒|a|>0,|a|>0⇒a>0或a<0即|a|>0不能推出a>0,∴a>0”是“|a|>0”的充分不必要条件故选A考点:必要条件.10、D【解题分析】

根据同角三角函数基本关系,得到,求解,再根据题意,即可得出结果.【题目详解】因为,由同角三角函数基本关系可得:,解得:,又是第四象限角,所以.故选:D.【题目点拨】本题主要考查已知正切求正弦,熟记同角三角函数基本关系即可,属于常考题型.11、B【解题分析】

先计算数据平均值,再利用方差公式得到答案.【题目详解】数据恰好构成公差为5的等差数列故答案选B【题目点拨】本题考查了数据的方差的计算,将平均值表示为是解题的关键,意在考查学生的计算能力.12、A【解题分析】

先作出不等式组所表示的可行域,然后平移直线,观察直线在轴上的截距取最大值时对应的最优解,将最优解代入函数即可得出答案。【题目详解】作出不等式组所表示的可行域如下图所示:联立,得,点的坐标为,平移直线,当该直线经过点,它在轴上的截距取最大值,此时,取最大值,即,故选:A.【题目点拨】本题考查线性规划问题,考查线性目标函数的最值问题,解题思路就是作出可行域,平移直线观察在坐标轴上的截距变化寻找最优解,是常考题型,属于中等题。二、填空题:本题共4小题,每小题5分,共20分。13、0【解题分析】试题分析:由题意得,复数为纯虚数,则,解得或,当时,(舍去),所以.考点:复数的概念.14、【解题分析】试题分析:由已知,AC是小圆的直径.所以过球心O作小圆的垂线,垂足是AC的中点.,AC=3,∴BC=3,即BC=OB=OC.∴∠BOC=,则B、C两点的球面距离=×3=π.考点:球的几何特征,球面距离.点评:中档题,解有关球面距离的问题,最关键是突出球心,找出数量关系.15、【解题分析】

先确定比分为1比2时甲乙在三次发球比赛中得分情况,再分别求对应概率,最后根据互斥事件概率公式求结果【题目详解】比分为1比2时有三种情况:(1)甲第一次发球得分,甲第二次发球失分,乙第一次发球得分(2)甲第一次发球失分,甲第二次发球得分,乙第一次发球得分(3)甲第一次发球失分,甲第二次发球失分,乙第一次发球失分所以概率为【题目点拨】本题考查根据互斥事件概率公式求概率,考查基本分析求解能力,属中档题.16、【解题分析】

画出图形,利用折叠与展开法则使和在同一个平面,转化折线段为直线段距离最小,即可求得的最小值.【题目详解】当的最小值,即到底面的距离的最小值与的最小值之和.为底面上的动点,当是在底面上的射影,即是最小值.展开三角形与三角形在同一个平面上,如图:长方体中,,长方体体对角线长为:在中:故故过点作,即为最小值.在,故答案为:.【题目点拨】解答折叠问题的关键在于画好折叠前后的平面图形与立体图形,并弄清折叠前后哪些条件发生了变化,哪些条件没有发生变化.这些未变化的已知条件都是我们分析问题和解决问题的依据.三、解答题:共70分。解答应写出文字说明、证明过程或演算步骤。17、(1)平均成绩为70.5分(2)人(3)【解题分析】

(1)先计算中间值和对应概率,相乘再相加得到答案.(2)先计算服从正态分布,根据公式得到答案.(3)先计算概率,再利用二项分布公式得到答案.【题目详解】(1)由题意知:中间值455565758595概率0.10.150.20.30.150.1∴,∴这4000人“运动参与度”得分的平均成绩为70.5分.(2)依题意服从正态分布,其中,,,∴服从正态分布,而,∴.∴这4000人中“运动参与度”得分超过84.81分的人数估计为人人.(3)全市所有人的“运动参与度”得分不超过84.81分的概率.而,∴.【题目点拨】本题考查了平均值,正态分布,二项分布,概率.综合性较强,意在考查学生解决问题的能力.18、(1)(2)选择B方案【解题分析】【试题分析】(1)由于总费用为10000元,说明试验期内恰好有1台设备使用寿命到期,因此可运用独立事件的概率公式可求得;(2)可将问题转化为两类进行求解:(1)若选择方案,记试验期内更换该种设备台数为,总费用为元,则,所以,又,所以;(2)若选择B方案,记试验期内更换该种设备台数为,总费用元,则,,,,所以,又,所以因为,所以选择B方案.解:(1)总费用为10000元,说明试验期内恰好有1台设备使用寿命到期,概率为:;(2)若选择方案,记试验期内更换该种设备台数为,总费用为元,则,所以,又,所以;若选择B方案,记试验期内更换该种设备台数为,总费用元,则,,,,所以,又,所以因为,所以选择B方案.19、(1)见解析;(2)见解析【解题分析】

(1)先求导数,再根据导函数零点分类讨论,最后根据导函数符号确定单调区间,(2)先求导数得函数g(x)的图像在x=x【题目详解】(1)∵所以当m≤0时,f'(x)=0⇒x=1,所以增区间(0,1)当0<m<1时,f'(x)=0⇒x=1,x=1m>1当m=1时,f'(x)≥0,所以增区间当m>1时,f'(x)=0⇒x=1,x=1m(2)因为g(x)=f(x)-3m所以g'因此函数g(x)的图像在x=x0因为函数g(x)的两个零点分别为x1所以m即(m(所以g令h(t)=-lnt+所以h(t)<h(1)=0,从而g【题目点拨】本题考查利用导数研究函数单调性以及利用导数证明不等式,考查综合分析求解能力,属难题.20、见解析【解题分析】

根据该毕业生得到面试的机会为0时的概率,求出乙、丙公司面试的概率,根据题意得到X的可能取值,结合变量对应的事件写出概率得出分布列及期望.【题目详解】∵P(X=0),∴,∴p,由题意知X为该毕业生得到面试的公司个数,则X的可能取值是0,1,2,3,P(X=1)P(X=2),P(X=3)=1,X0123P∴E(X),【题目点拨】本题考查离散型随机变量的分布列和期望,准确计算是关键,是一个基础题.21、(1)(2)【解题分析】

(1)求出.利用导函数的符号判断函数的单调性然后求解最大值;(2)分情况:①在时,②在时,③在时,判断函数的单调性,求解函数的极值与0的关系,然后求解零点个数.【题目详解】(1)对求导数,.在时,为增函数,在时为减函数,∴,从而的最大值为.(2)①在时,在R上为增函数,且,故无零点.②在时,在R上单增,又,,故在R上只有一个零点.③在时,由可知在时有唯一极小值,.若,,无零

温馨提示

  • 1. 本站所有资源如无特殊说明,都需要本地电脑安装OFFICE2007和PDF阅读器。图纸软件为CAD,CAXA,PROE,UG,SolidWorks等.压缩文件请下载最新的WinRAR软件解压。
  • 2. 本站的文档不包含任何第三方提供的附件图纸等,如果需要附件,请联系上传者。文件的所有权益归上传用户所有。
  • 3. 本站RAR压缩包中若带图纸,网页内容里面会有图纸预览,若没有图纸预览就没有图纸。
  • 4. 未经权益所有人同意不得将文件中的内容挪作商业或盈利用途。
  • 5. 人人文库网仅提供信息存储空间,仅对用户上传内容的表现方式做保护处理,对用户上传分享的文档内容本身不做任何修改或编辑,并不能对任何下载内容负责。
  • 6. 下载文件中如有侵权或不适当内容,请与我们联系,我们立即纠正。
  • 7. 本站不保证下载资源的准确性、安全性和完整性, 同时也不承担用户因使用这些下载资源对自己和他人造成任何形式的伤害或损失。

评论

0/150

提交评论